908 resultados para Worldwide-, Wound Healing
Resumo:
Aim: To investigate the healing process following use of collagen sponges in the dental socket after extraction. Wound complications during the study were also evaluated. Methods: 32 cats were included in this study. IV administration of the combination of diazepam (0.22 mg/kg) and ketamine (10 mg/kg) was used to induce general anesthesia. Surgical extraction of both 3rd mandibular premolars was performed. The open dental sockets were divided in two groups. In Group A, the open dental socket on the left side was closed using 4-0 Monocryl in simple interrupted pattern. In Group B, the right dental socket was filled with lyophilized hydrolyzed collagen and the buccal and lingual flaps were sutured using 4-0 Monocryl and simple interrupted pattern. Meloxicam (0.2 mg/kg) was used to manage the post-extraction pain in all cats. Ampicilline 20 mg/kg was used as prophylaxis. The wounds were observed during the study to evaluate any signs of inflammation or dehiscence. Radiographs were taken to compare healing of the socket 3 weeks after the procedure. A 1 mm biopsy punch sample was taken from sockets in all cats for comparison of the healing in both groups. Results: Hemorrhage occurred only in the sockets of Group A. Remission of radiolucent area occurred in both groups. Mean score of inflammation was lower and mean scores of fibrotic reaction and fibroplasia were higher in Group B (p<0.05). Conclusions: Use of hemosponge in alveolar socket may accelerate fibroplasia and formation of the connective tissue and reduce inflammation after tooth extraction. Therefore, post-extraction use of the hemostatic agent in the dental socket is recommended.
Resumo:
Abstract Aim: To identify nursing interventions aimed at persons with venous, arterial or mixed leg ulcers. Methodology: Carried out research in the EBSCO search engine: CINAHL Plus with Full Text, MEDLINE with Full Text, MedicLatina, Academic Search Complete, sought full text articles, published between 2008/01/01 and 2015/01/31, with the following keywords [(MM "leg ulcer") OR (wound care) OR (wound healing)] AND [(nursing) OR (nursing assessment) OR (nursing intervention)], filtered through initial question in PI[C]O format. Results: The different etiologies of leg ulcer require a specific therapeutic and prophylactic approach. Factors that promote healing were identified: individualization of care, interpersonal relationship, pain control, control of the exudate, education for health self-management, self-care, therapeutic adherence, implementation of guidelines of good practice and auditing and feedback of the practices. Conclusion: Person-centred care and practices based on evidence improves health results in prevention and treatment of leg ulcers.
Resumo:
Ghrelin is a gut-brain peptide hormone that induces appetite, stimulates the release of growth hormone, and has recently been shown to ameliorate inflammation. Recent studies have suggested that ghrelin may play a potential role in inflammation-related diseases such as inflammatory bowel diseases (IBD). A previous study with ghrelin in the TNBS mouse model of colitis demonstrated that ghrelin treatment decreased the clinical severity of colitis and inflammation and prevented the recurrence of disease. Ghrelin may be acting at the immunological and epithelial level as the ghrelin receptor (GHSR) is expressed by immune cells and intestinal epithelial cells. The current project investigated the effect of ghrelin in a different mouse model of colitis using dextran sodium sulphate (DSS) – a luminal toxin. Two molecular weight forms of DSS were used as they give differing effects (5kDa and 40kDa). Ghrelin treatment significantly improved clinical colitis scores (p=0.012) in the C57BL/6 mouse strain with colitis induced by 2% DSS (5kDa). Treatment with ghrelin suppressed colitis in the proximal colon as indicated by reduced accumulative histopathology scores (p=0.03). Whilst there was a trend toward reduced scores in the mid and distal colon in these mice this did not reach significance. Ghrelin did not affect histopathology scores in the 40kDa model. There was no significant effect on the number of regulatory T cells or TNF-α secretion from cultured lymph node cells from these mice. The discovery of C-terminal ghrelin peptides, for example, obestatin and the peptide derived from exon 4 deleted proghrelin (Δ4 preproghrelin peptide) have raised questions regarding their potential role in biological functions. The current project investigated the effect of Δ4 peptide in the DSS model of colitis however no significant suppression of colitis was observed. In vitro epithelial wound healing assays were also undertaken to determine the effect of ghrelin on intestinal epithelial cell migration. Ghrelin did not significantly improve wound healing in these assays. In conclusion, ghrelin treatment displays a mild anti-inflammatory effect in the 5kDa DSS model. The potential mechanisms behind this effect and the disparity between these results and those published previously will be discussed.
Resumo:
This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.
Resumo:
During wound repair, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs) is crucial for the normal extra cellular matrix turnover. However, the over expression of several MMPs including MMP-1, 2, 3, 8, 9 and MMP-10, combined with abnormally high levels of activation or low expression of TIMPs, may contribute to excessive degradation of connective tissue and formation of chronic ulcers. There are many groups exploring strategies for promoting wound healing involving delivery of growth factors, cells, ECM components and small molecules. Our approach for improving the balance of MMPs is not to add anything more to the wound, but instead to neutralise the over-expressed MMPs using inhibitors tethered to a bandage-like hydrogel. Our in vitro experiments using designed synthetic pseudo peptide inhibitors have been demonstrated to inhibit MMP activity in standard solutions. These inhibitors have also been tethered to polyethylene glycol hydrogels using a facile reaction between the linker unit on the inhibitor and the gel. After tethering the inhibition of MMPs diminishes to some extent and we postulate that this arises due to poor diffusion of the MMPs into the gels. When the tethered inhibitors were tested against chronic wound fluid obtained against patients we observed over 40% inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.
Resumo:
Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.
Resumo:
Hydrogels, which are three-dimensional crosslinked hydrophilic polymers, have been used and studied widely as vehicles for drug delivery due to their good biocompatibility. Traditional methods to load therapeutic proteins into hydrogels have some disadvantages. Biological activity of drugs or proteins can be compromised during polymerization process or the process of loading protein can be really timeconsuming. Therefore, different loading methods have been investigated. Based on the theory of electrophoresis, an electrochemical gradient can be used to transport proteins into hydrogels. Therefore, an electrophoretic method was used to load protein in this study. Chemically and radiation crosslinked polyacrylamide was used to set up the model to load protein electrophoretically into hydrogels. Different methods to prepare the polymers have been studied and have shown the effect of the crosslinker (bisacrylamide) concentration on the protein loading and release behaviour. The mechanism of protein release from the hydrogels was anomalous diffusion (i.e. the process was non-Fickian). The UV-Vis spectra of proteins before and after reduction show that the bioactivities of proteins after release from hydrogel were maintained. Due to the concern of cytotoxicity of residual monomer in polyacrylamide, poly(2-hydroxyethyl- methacrylate) (pHEMA) was used as the second tested material. In order to control the pore size, a polyethylene glycol (PEG) porogen was introduced to the pHEMA. The hydrogel disintegrated after immersion in water indicating that the swelling forces exceeded the strength of the material. In order to understand the cause of the disintegration, several different conditions of crosslinker concentration and preparation method were studied. However, the disintegration of the hydrogel still occurred after immersion in water principally due to osmotic forces. A hydrogel suitable for drug delivery needs to be biocompatible and also robust. Therefore, an approach to improving the mechanical properties of the porogen-containing pHEMA hydrogel by introduction of an inter-penetrating network (IPN) into the hydrogel system has been researched. A double network was formed by the introduction of further HEMA solution into the system by both electrophoresis and slow diffusion. Raman spectroscopy was used to observe the diffusion of HEMA into the hydrogel prior to further crosslinking by ã-irradiation. The protein loading and release behaviour from the hydrogel showing enhanced mechanical property was also studied. Biocompatibility is a very important factor for the biomedical application of hydrogels. Different hydrogels have been studied on both a three-dimensional HSE model and a HSE wound model for their biocompatibilities. They did not show any detrimental effect to the keratinocyte cells. From the results reported above, these hydrogels show good biocompatibility in both models. Due to the advantage of the hydrogels such as the ability to absorb and deliver protein or drugs, they have potential to be used as topical materials for wound healing or other biomedical applications.
Resumo:
Velocity jump processes are discrete random walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity jump models are often used to represent a type of persistent motion, known as a “run and tumble”, which is exhibited by some isolated bacteria cells. All previous velocity jump processes are non-interacting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high cell density problems using a velocity jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
The formation of hypertrophic scars is a frequent outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS; Perkins et al., 1983). Although widely used, knowledge regarding SGS and their mechanism of action on hypertrophic scars is limited. Furthermore, SGS require consistent application for at least twelve hours a day for up to twelve consecutive months, beginning as soon as wound reepithelialisation has occurred. Preliminary research at QUT has shown that some species of silicone present in SGS have the ability to permeate into collagen gel skin mimetics upon exposure. An analogue of these species, GP226, was found to decrease both collagen synthesis and the total amount of collagen present following exposure to cultures of cells derived from hypertrophic scars. This silicone of interest was a crude mixture of silicone species, which resolved into five fractions of different molecular weight. These five fractions were found to have differing effects on collagen synthesis and cell viability following exposure to fibroblasts derived from hypertrophic scars (HSF), keloid scars (KF) and normal skin (nHSF and nKF). The research performed herein continues to further assess the potential of GP226 and its fractions for scar remediation by determining in more detail its effects on HSF, KF, nHSF, nKF and human keratinocytes (HK) in terms of cell viability and proliferation at various time points. Through these studies it was revealed that Fraction IV was the most active fraction as it induced a reduction in cell viability and proliferation most similar to that observed with GP226. Cells undergoing apoptosis were also detected in HSF cultures exposed to GP226 and Fraction IV using the Tunel assay (Roche). These investigations were difficult to pursue further as the fractionation process used for GP226 was labour-intensive and time inefficient. Therefore a number of silicones with similar structure to Fraction IV were synthesised and screened for their effect following application to HSF and nHSF. PDMS7-g-PEG7, a silicone-PEG copolymer of low molecular weight and low hydrophilic-lipophilic balance factor, was found to be the most effective at reducing cell proliferation and inducing apoptosis in cultures of HSF, nHSF and HK. Further studies investigated gene expression through microarray and superarray techniques and demonstrated that many genes are differentially expressed in HSF following treatment with GP226, Fraction IV and PDMS7-g-PEG7. In brief, it was demonstrated that genes for TGFβ1 and TNF are not differentially regulated while genes for AIFM2, IL8, NSMAF, SMAD7, TRAF3 and IGF2R show increased expression (>1.8 fold change) following treatment with PDMS7-g-PEG7. In addition, genes for αSMA, TRAF2, COL1A1 and COL3A1 have decreased expression (>-1.8 fold change) following treatment with GP226, Fraction IV and PDMS7-g-PEG7. The data obtained suggest that many different pathways related to apoptosis and collagen synthesis are affected in HSF following exposure to PDMS7-g-PEG7. The significance is that silicone-PEG copolymers, such as GP226, Fraction IV and PDMS7-g-PEG7, could potentially be a non-invasive substitute to apoptosis-inducing chemical agents that are currently used as scar treatments. It is anticipated that these findings will ultimately contribute to the development of a novel scar therapy with faster action and improved outcomes for patients suffering from hypertrophic scars.
Resumo:
Flightless (Flii) is upregulated in response to wounding and has been shown to function in wound closure and scarring. In macrophages intracellular Flii negatively modulates TLR signalling and dampens cytokine production. We now show that Flii is constitutively secreted from macrophages and fibroblasts and is present in human plasma. Secretion from fibroblasts is upregulated in response to scratch wounding and LPS-activated macrophages also temporally upregulate their secretion of Flii. Using siRNA, wild-type and mutant proteins we show that Flii is secreted via a late endosomal/lysosomal pathway that is regulated by Rab7 and Stx11. Flii contains 11 leucine rich repeat (LRR) domains in its N-terminus that have nearly 50% similarity to those in the extracellular pathogen binding portion of Toll-like receptor 4 (TLR4). We show secreted Flii can also bind LPS and has the ability to alter macrophage activation. LPS activation of macrophages in Flii depleted conditioned media leads to enhanced macrophage activation and increased TNF secretion compared to cells activated in the presence of Flii. These results show secreted Flii binds to LPS and in doing so alters macrophage activation and cytokine secretion, suggesting that like the intracellular pool of Flii, secreted Flii also has the ability to alter inflammation.
Resumo:
Background: Epidermogenesis and epidermal wound healing are tightly regulated processes during which keratinocytes must migrate, proliferate and differentiate. Cell to cell adhesion is crucial to the initiation and regulation of these processes. CUB domain containing protein 1 (CDCP1) is a transmembrane glycoprotein that is differentially tyrosine phosphorylated during changes in cell adhesion and survival signalling and is expressed by keratinocytes in native human skin, as well as in primary cultures. Objectives: To investigate the expression of CDCP1 during epidermogenesis and its role in keratinocyte migration. Methods: We examined both human skin tissue and an in vitro three-dimensional human skin equivalent model to examine the expression of CDCP1 during epidermogenesis. To examine the role of CDCP1 in keratinocyte migration we used a function blocking anti-CDCP1 antibody and a real-time Transwell™ cell migration assay. Results: Immunohistochemical analysis indicated that in native human skin CDCP1 is expressed in the stratum basale and stratum spinosum. In contrast, during epidermogenesis in a 3-dimensional human skin equivalent model CDCP1 was expressed only in the stratum basale, with localization restricted to the cell-cell membrane. No expression was detected in basal keratinocytes that were in contact with the basement membrane. Further, an anti-CDCP1 function blocking antibody was shown to disrupt keratinocyte chemotactic migration in vitro. Conclusions: These findings delineate the expression of CDCP1 in human epidermal keratinocytes during epidermogenesis and demonstrate that CDCP1 is involved in keratinocyte migration.
Resumo:
The concept of the cellular glycoprotein vitronectin acts as a biological ‘glue’ and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knock-out mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that vitronectin occupies a role in the earliest events of thrombogenesis and tissue repair. That role is as a foundation upon which the thrombus grows in an organised structure. In addition to closing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators and provides a provisional scaffold for the repairing tissue. In the absence of vitronectin (e.g. VN-KO animal) this cascade is disrupted before it begins. Our data demonstrates that a wide variety of biologically active species associate with VN. While initial studies were focused on mitogens, other classes of bioactives (e.g. glycosaminoglycans, metalloproteinases) are now also known to specifically interact with VN. Many of these interactions are long-lived, often resulting in multi-protein complexes, while others are stable for prolonged periods. Multiprotein complexes provide several advantages: prolonging molecular interaction; sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular / biological responses. We contend that these, or equivalent, multi-protein complexes mediate vitronectin functionality in vivo. It is also likely that many of the species demonstrated to associate with vitronectin in vitro, also associate with vitronectin in vivo in similar multi-protein complexes. Thus the predominant biological function of vitronectin is that of a master controller of the extracellular environment; informing, and possibly instructing cells ‘where’ to behave, ‘when’ to behave, and ‘how’ to behave (i.e. appropriately for the current circumstance).