917 resultados para World Wide Web (Information Retrieval System)
Resumo:
Microposts are small fragments of social media content that have been published using a lightweight paradigm (e.g. Tweets, Facebook likes, foursquare check-ins). Microposts have been used for a variety of applications (e.g., sentiment analysis, opinion mining, trend analysis), by gleaning useful information, often using third-party concept extraction tools. There has been very large uptake of such tools in the last few years, along with the creation and adoption of new methods for concept extraction. However, the evaluation of such efforts has been largely consigned to document corpora (e.g. news articles), questioning the suitability of concept extraction tools and methods for Micropost data. This report describes the Making Sense of Microposts Workshop (#MSM2013) Concept Extraction Challenge, hosted in conjunction with the 2013 World Wide Web conference (WWW'13). The Challenge dataset comprised a manually annotated training corpus of Microposts and an unlabelled test corpus. Participants were set the task of engineering a concept extraction system for a defined set of concepts. Out of a total of 22 complete submissions 13 were accepted for presentation at the workshop; the submissions covered methods ranging from sequence mining algorithms for attribute extraction to part-of-speech tagging for Micropost cleaning and rule-based and discriminative models for token classification. In this report we describe the evaluation process and explain the performance of different approaches in different contexts.
Resumo:
Graph-structured databases are widely prevalent, and the problem of effective search and retrieval from such graphs has been receiving much attention recently. For example, the Web can be naturally viewed as a graph. Likewise, a relational database can be viewed as a graph where tuples are modeled as vertices connected via foreign-key relationships. Keyword search querying has emerged as one of the most effective paradigms for information discovery, especially over HTML documents in the World Wide Web. One of the key advantages of keyword search querying is its simplicity—users do not have to learn a complex query language, and can issue queries without any prior knowledge about the structure of the underlying data. The purpose of this dissertation was to develop techniques for user-friendly, high quality and efficient searching of graph structured databases. Several ranked search methods on data graphs have been studied in the recent years. Given a top-k keyword search query on a graph and some ranking criteria, a keyword proximity search finds the top-k answers where each answer is a substructure of the graph containing all query keywords, which illustrates the relationship between the keyword present in the graph. We applied keyword proximity search on the web and the page graph of web documents to find top-k answers that satisfy user’s information need and increase user satisfaction. Another effective ranking mechanism applied on data graphs is the authority flow based ranking mechanism. Given a top- k keyword search query on a graph, an authority-flow based search finds the top-k answers where each answer is a node in the graph ranked according to its relevance and importance to the query. We developed techniques that improved the authority flow based search on data graphs by creating a framework to explain and reformulate them taking in to consideration user preferences and feedback. We also applied the proposed graph search techniques for Information Discovery over biological databases. Our algorithms were experimentally evaluated for performance and quality. The quality of our method was compared to current approaches by using user surveys.
Resumo:
Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.
Resumo:
The outcome of this research is an Intelligent Retrieval System for Conditions of Contract Documents. The objective of the research is to improve the method of retrieving data from a computer version of a construction Conditions of Contract document. SmartDoc, a prototype computer system has been developed for this purpose. The system provides recommendations to aid the user in the process of retrieving clauses from the construction Conditions of Contract document. The prototype system integrates two computer technologies: hypermedia and expert systems. Hypermedia is utilized to provide a dynamic way for retrieving data from the document. Expert systems technology is utilized to build a set of rules that activate the recommendations to aid the user during the process of retrieval of clauses. The rules are based on experts knowledge. The prototype system helps the user retrieve related clauses that are not explicitly cross-referenced but, according to expert experience, are relevant to the topic that the user is interested in.
Resumo:
Postprint
Resumo:
Users seeking information may not find relevant information pertaining to their information need in a specific language. But information may be available in a language different from their own, but users may not know that language. Thus users may experience difficulty in accessing the information present in different languages. Since the retrieval process depends on the translation of the user query, there are many issues in getting the right translation of the user query. For a pair of languages chosen by a user, resources, like incomplete dictionary, inaccurate machine translation system may exist. These resources may be insufficient to map the query terms in one language to its equivalent terms in another language. Also for a given query, there might exist multiple correct translations. The underlying corpus evidence may suggest a clue to select a probable set of translations that could eventually perform a better information retrieval. In this paper, we present a cross language information retrieval approach to effectively retrieve information present in a language other than the language of the user query using the corpus driven query suggestion approach. The idea is to utilize the corpus based evidence of one language to improve the retrieval and re-ranking of news documents in the other language. We use FIRE corpora - Tamil and English news collections in our experiments and illustrate the effectiveness of the proposed cross language information retrieval approach.
Resumo:
Gracias al crecimiento, expansión y popularización de la World Wide Web, su desarrollo tecnológico tiene una creciente importancia en la sociedad. La simbiosis que protagonizan estos dos entornos ha propiciado una mayor influencia social en las innovaciones de la plataforma y un enfoque mucho más práctico. Nuestro objetivo en este artículo es describir, caracterizar y analizar el surgimiento y difusión del nuevo estándar de hipertexto que rige la Web; HTML5. Al mismo tiempo exploramos este proceso a la luz de varias teorías que aúnan tecnología y sociedad. Dedicamos especial atención a los usuarios de la World Wide Web y al uso genérico que realizan de los Medios Sociales o "Social Media". Sugerimos que el desarrollo de los estándares web está influenciado por el uso cotidiano de este nuevo tipo de tecnologías y aplicaciones.
Resumo:
"January 20, 1997."
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2010
Resumo:
The MARS (Media Asset Retrieval System) Project is the collaborative effort of public broadcasters,libraries and schools in the Puget Sound region to create a digital online resource that provides access to content produced by public broadcasters via the public libraries. Convergence ConsortiumThe Convergence Consortium is a model for community collaboration, including organizations such as public broadcasters, libraries, museums, and schools in the Puget Sound region to assess the needs of their constituents and pool resources to develop solutions to meet those needs. Specifically, the archives of public broadcasters have been identified as significant resources for the local communities and nationally. These resources can be accessed on the broadcasters websites, and through libraries and used by schools, and integrated with text and photographic archives from other partners.MARS’ goalCreate an online resource that provides effective access to the content produced locally by KCTS (Seattle PBS affiliate) and KUOW (Seattle NPR affiliate). The broadcasts will be made searchable using the CPB Metadata Element Set (under development) and controlled vocabularies (to be developed). This will ensure a user friendly search and navigation mechanism and user satisfaction.Furthermore, the resource can search the local public library’s catalog concurrently and provide the user with relevant TV material, radio material, and books on a given subject.The ultimate goal is to produce a model that can be used in cities around the country.The current phase of the project assesses the community’s need, analyzes the current operational systems, and makes recommendations for the design of the resource.Deliverables• Literature review of the issues surrounding the organization, description and representation of media assets• Needs assessment report of internal and external stakeholders• Profile of the systems in the area of managing and organizing media assetsfor public broadcasting nationwideActivities• Analysis of information seeking behavior• Analysis of collaboration within the respective organizations• Analysis of the scope and context of the proposed system• Examining the availability of information resources and exchangeof resources among users
Resumo:
The MARS (Media Asset Retrieval System) Project is a collaboration between public broadcasters, libraries and schools in the Puget Sound region to assess the needs of their constituents and pool resources to develop solutions to meet those needs. The Project’s ultimate goal is to create a digital online resource that will provide access to content produced by public broadcasters and libraries. The MARS Project is funded by a grant from the Corporation for Public Broadcasting (CPB) Television Future Fund. Convergence ConsortiumThe Convergence Consortium is a model for community collaboration, including representatives from public broadcasting, libraries and schools in the Puget Sound region. They meet regularly to consider collaborative efforts that will be mutually beneficial to their institutions and constituents. Specifically, the archives of public broadcasters have been identified as significant resources that can be accessed through libraries and used by schools, and integrated with text and photographic archives from other partners.Using the work-centered framework, we collected data through interviews with nine engineers and observation of their searching while they performed their regular, job-related searches on the Web. The framework was used to analyze the data on two levels: 1) the activities and organizational relationships and constrains of work domains, and 2) users’ cognitive and social activities and their subjective preferences during searching.
Resumo:
La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.
Resumo:
Con l’avvento dell’Industry 4.0, l’utilizzo dei dispositivi Internet of Things (IoT) è in continuo aumento. Le aziende stanno spingendo sempre più verso l’innovazione, andando ad introdurre nuovi metodi in grado di rinnovare sistemi IoT esistenti e crearne di nuovi, con prestazioni all’avanguardia. Un esempio di tecniche innovative emergenti è l’utilizzo dei Digital Twins (DT). Essi sono delle entità logiche in grado di simulare il reale comportamento di un dispositivo IoT fisico; possono essere utilizzati in vari scenari: monitoraggio di dati, rilevazione di anomalie, analisi What-If oppure per l’analisi predittiva. L’integrazione di tali tecnologie con nuovi paradigmi innovativi è in rapido sviluppo, uno tra questi è rappresentato dal Web of Things (WoT). Il Web of Thing è un termine utilizzato per descrivere un paradigma che permette ad oggetti del mondo reale di essere gestiti attraverso interfacce sul World Wide Web, rendendo accessibile la comunicazione tra più dispositivi con caratteristiche hardware e software differenti. Nonostante sia una tecnologia ancora in fase di sviluppo, il Web of Thing sta già iniziando ad essere utilizzato in molte aziende odierne. L’elaborato avrà come obiettivo quello di poter definire un framework capace di integrare un meccanismo di generazione automatica di Digital Twin su un contesto Web of Thing. Combinando tali tecnologie, si potrebbero sfruttare i vantaggi dell’interoperabilità del Web of Thing per poter generare un Digital Twin, indipendentemente dalle caratteristiche hardware e software degli oggetti da replicare.
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física