896 resultados para Weighted Mean


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper establishes sufficient conditions to bound the error in perturbed conditional mean estimates derived from a perturbed model (only the scalar case is shown in this paper but a similar result is expected to hold for the vector case). The results established here extend recent stability results on approximating information state filter recursions to stability results on the approximate conditional mean estimates. The presented filter stability results provide bounds for a wide variety of model error situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: To describe the diet quality of a national sample of Australian women with a recent history of gestational diabetes mellitus (GDM) and determine factors associated with adherence to national dietary recommendations. SUBJECTS/METHODS: A postpartum lifestyle survey with 1499 Australian women diagnosed with GDM p3 years previously. Diet quality was measured using the Australian recommended food score (ARFS) and weighted by demographic and diabetes management characteristics. Multinominal logistic regression analysis was used to determine the association between diet quality and demographic characteristics, health seeking behaviours and diabetes-related risk factors. RESULTS: Mean (±s.d.) ARFS was 30.9±8.1 from a possible maximum score of 74. Subscale component scores demonstrated that the nuts/legumes, grains and fruits were the most poorly scored. Factors associated with being in the highest compared with the lowest ARFS quintile included age (odds ratio (OR) 5-year increase=1.40; 95% (confidence interval) CI:1.16–1.68), tertiary education (OR=2.19; 95% CI:1.52–3.17), speaking only English (OR=1.92; 95% CI:1.19–3.08), being sufficiently physically active (OR=2.11; 95% CI:1.46–3.05), returning for postpartum blood glucose testing (OR=1.75; 95% CI:1.23–2.50) and receiving riskreduction advice from a health professional (OR=1.80; 95% CI:1.24–2.60). CONCLUSIONS: Despite an increased risk of type 2 diabetes, women in this study had an overall poor diet quality as measured by the ARFS. Women with GDM should be targeted for interventions aimed at achieving a postpartum diet consistent with the guidelines for chronic disease prevention. Encouraging women to return for follow-up and providing risk reduction advice may be positive initial steps to improve diet quality, but additional strategies need to be identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the theory of intellectual property (IP) in the creative industries (CI) from the evolutionary economic perspective based on evidence from China. We argue that many current confusions and dysfunctions about IP can be traced to three widely overlooked aspects of the growth of knowledge context of IP in the CI: (1) the effect of globalization; (2) the dominating relative economic value of reuse of creative output over monopoly incentives to create input; and (3) the evolution of business models in response to institutional change. We conclude that a substantial weakening of copyright will, in theory, produce positive net public and private gain due to the evolutionary dynamics of all three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grouping users in social networks is an important process that improves matching and recommendation activities in social networks. The data mining methods of clustering can be used in grouping the users in social networks. However, the existing general purpose clustering algorithms perform poorly on the social network data due to the special nature of users' data in social networks. One main reason is the constraints that need to be considered in grouping users in social networks. Another reason is the need of capturing large amount of information about users which imposes computational complexity to an algorithm. In this paper, we propose a scalable and effective constraint-based clustering algorithm based on a global similarity measure that takes into consideration the users' constraints and their importance in social networks. Each constraint's importance is calculated based on the occurrence of this constraint in the dataset. Performance of the algorithm is demonstrated on a dataset obtained from an online dating website using internal and external evaluation measures. Results show that the proposed algorithm is able to increases the accuracy of matching users in social networks by 10% in comparison to other algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality data sets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares Regression and Bayesian Weighted Least Squares Regression for the estimation of uncertainty associated with pollutant build-up prediction using limited data sets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in the prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image representations derived from simplified models of the primary visual cortex (V1), such as HOG and SIFT, elicit good performance in a myriad of visual classification tasks including object recognition/detection, pedestrian detection and facial expression classification. A central question in the vision, learning and neuroscience communities regards why these architectures perform so well. In this paper, we offer a unique perspective to this question by subsuming the role of V1-inspired features directly within a linear support vector machine (SVM). We demonstrate that a specific class of such features in conjunction with a linear SVM can be reinterpreted as inducing a weighted margin on the Kronecker basis expansion of an image. This new viewpoint on the role of V1-inspired features allows us to answer fundamental questions on the uniqueness and redundancies of these features, and offer substantial improvements in terms of computational and storage efficiency.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision (appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model conformance in a visual manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimated genetic changes in body and carcass weight traits in a giant freshwater prawn (GFP) (Macrobrachium rosenbergii) population selected for increased body weight at harvest in Vietnam. The data set consisted of 18,387 individual body and 1730 carcass weight records, as well as full pedigree information collected over four generations. Average selection response (per generation) in body weight at harvest (transformed to square root) estimated as the difference between the Selection line and the Control group was 7.4% calculated from least squares mean (LSMs), 7.0% from estimated breeding values (EBVs) and 4.4% calculated from EBVs between two consecutive generations. Favorable correlated selection responses (estimated from LSMs) were found for other body traits including: total length, cephalothorax length, abdominal length, cephalothorax width, and abdominal width (12.1%, 14.5%, 10.4%, 15.5% and 13.3% over three selection generations, respectively). Data in the second generation of selection showed positive correlated responses for carcass weight traits including: abdominal weight, exoskeleton-off weight, and telson-off weight of 8.8%, 8.6% and 8.8%, respectively. We conclude that body weight at harvest responded well to the application of combined (between and within) family selection and correlated responses in carcass weight traits were favorable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we explore the effectiveness of patch-based gradient feature extraction methods when applied to appearance-based gait recognition. Extending existing popular feature extraction methods such as HOG and LDP, we propose a novel technique which we term the Histogram of Weighted Local Directions (HWLD). These 3 methods are applied to gait recognition using the GEI feature, with classification performed using SRC. Evaluations on the CASIA and OULP datasets show significant improvements using these patch-based methods over existing implementations, with the proposed method achieving the highest recognition rate for the respective datasets. In addition, the HWLD can easily be extended to 3D, which we demonstrate using the GEV feature on the DGD dataset, observing improvements in performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modelling interactions between such species, we often make use of the mean field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean field approximation is only used in appropriate settings. In circumstances where the mean field approximation is unsuitable we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper we provide a method that overcomes many of the failures of the mean field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multi-species case, and show results specific to a two-species problem. We compare averaged discrete results to both the mean field approximation and our improved method which incorporates spatial correlations. We note that the mean field approximation fails dramatically in some cases, predicting very different behaviour from that seen upon averaging multiple realisations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behaviour in all cases, thus providing a more reliable modelling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.