374 resultados para Weibull-jakauma
Resumo:
Objectives: This study evaluated the reliability and failure modes of implants with a microthreaded or smooth design at the crestal region, restored with screwed or cemented crowns. The postulated null hypothesis was that the presence of microthreads in the implant cervical region would not result in different reliability and strength to failure than smooth design, regardless of fixation method, when subjected to step-stress accelerated life-testing (SSALT) in water. Materials and methods: Eighty four dental implants (3.3 × 10 mm) were divided into four groups (n = 21) according to implant macrogeometric design at the crestal region and crown fixation method: Microthreads Screwed (MS); Smooth Screwed (SS); Microthreads Cemented (MC), and Smooth Cemented (SC). The abutments were torqued to the implants and standardized maxillary central incisor metallic crowns were cemented (MC, SC) or screwed (MS, SS) and subjected to SSALT in water. The probability of failure versus cycles (90% two-sided confidence intervals) was calculated and plotted using a power law relationship for damage accumulation. Reliability for a mission of 50,000 cycles at 150 N (90% 2-sided confidence intervals) was calculated. Differences between final failure loads during fatigue for each group were assessed by Kruskal-Wallis along with Benferroni's post hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value (confidence interval range) derived from use level probability Weibull calculation of 1.30 (0.76-2.22), 1.17 (0.70-1.96), 1.12 (0.71-1.76), and 0.52 (0.30-0.89) for groups MC, SC, MS, and SS respectively, indicated that fatigue was an accelerating factor for all groups, except for SS. The calculated reliability was higher for SC (99%) compared to MC (87%). No difference was observed between screwed restorations (MS - 29%, SS - 43%). Failure involved abutment screw fracture for all groups. The cemented groups (MC, SC) presented more abutment and implant fractures. Significantly higher load to fracture values were observed for SC and MC relative to MS and SS (P < 0.001). Conclusion: Since reliability and strength to failure was higher for SC than for MC, our postulated null hypothesis was rejected. © 2012 John Wiley & Sons A/S.
Resumo:
Objective: Biological and mechanical implant-abutment connection complications and failures are still present in clinical practice, frequently compromising oral function. The purpose of this study was to evaluate the reliability and failure modes of anterior single-unit restorations in internal conical interface (ICI) implants using step-stress accelerated life testing (SSALT). Materials and methods: Forty-two ICI implants were distributed in two groups (n = 21 each): group AT-OsseoSpeed™ TX (Astra Tech, Waltham, MA, USA); group SV-Duocon System Line, Morse Taper (Signo Vinces Ltda., Campo Largo, PR, Brazil). The corresponding abutments were screwed to the implants and standardized maxillary central incisor metal crowns were cemented and subjected to SSALT in water. Use-level probability Weibull curves and reliability for a mission of 50,000 cycles at 200 N were calculated. Differences between groups were assessed by Kruskal-Wallis along with Bonferroni's post-hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value derived from use level probability Weibull calculation was 1.62 (1.01-2.58) for group AT and 2.56 (1.76-3.74) for group SV, indicating that fatigue was an accelerating factor for failure of both groups. The reliability for group AT was 0.95 and for group SV was 0.88. Kruskal-Wallis along with Bonferroni's post-hoc tests showed no significant difference between the groups tested (P > 0.27). In all specimens of both groups, the chief failure mode was abutment fracture at the conical joint region and screw fracture at neck's region. Conclusions: Reliability was not different between investigated ICI connections supporting maxillary incisor crowns. Failure modes were similar. © 2012 John Wiley & Sons A/S.
Resumo:
Objectives: This study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia. Methods: Vita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations. Results: One-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods. Clinical Significance: Slow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods. © 2013 Elsevier Ltd.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
The purpose of this study was to develop a mucoadhesive stimuli-sensitive drug delivery system for nasal administration of zidovudine (AZT). The system was prepared by formulating a low viscosity precursor of a liquid crystal phase, taking advantage of its lyotropic phase behavior. Flow rheology measurements showed that the formulation composed of PPG-5-CETETH-20, oleic acid and water (55, 30, 15% w/w), denominated P, has Newtonian flow behavior. Polarized light microscopy (PLM) revealed that formulation P is isotropic, whereas its 1:1 (w/w) dilution with artificial nasal mucus (ANM) changed the system to an anisotropic lamellar phase (PD). Oscillatory frequency sweep analysis showed that PD has a high storage modulus (G′) at nasal temperatures. Measurement of the mucoadhesive force against excised porcine nasal mucosa or a mucin disk proved that the transition to the lamellar phase tripled the work of mucoadhesion. Ex vivo permeation studies across porcine nasal mucosa exhibited an 18-fold rise in the permeability of AZT from the formulation. The Weibull mathematical model suggested that the AZT is released by Fickian diffusion mechanisms. Hence, the physicochemical characterization, combined with ex vivo studies, revealed that the PPG-5-CETETH-20, oleic acid, and water formulation could form a mucoadhesive matrix in contact with nasal mucus that promoted nasal absorption of the AZT. For an in vivo assessment, the plasma concentrations of AZT in rats were determined by HPLC method following intravenous and intranasal administration of AZT-loaded P formulation (PA) and AZT solution, respectively, at a dose of 8 mg/kg. The intranasal administration of PA resulted in a fast absorption process (Tmax = 6.7 min). Therefore, a liquid crystal precursor formulation administered by the nasal route might represent a promising novel tool for the systemic delivery of AZT and other antiretroviral drugs. In the present study, the uptake of AZT absorption in the nasal mucosa was demonstrated, providing new foundations for clinical trials in patients with AIDS. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Methods: Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s + 60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α = 0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. Results: The interaction (etching time vs. surface treatment) was significant for Ra (p = 0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60 s group (p < 0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p = 0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p < 0.0001). None of experimental groups failed to show 95% confidence intervals of σ 0 and m overlapped. FEA showed lower stress concentration after resin treatment. Significance: HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. © 2013 Academy of Dental Materials.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the study was to develop a system of growth and yield models for thinned stands of Eucalyptus spp.; and to assess the behavior of the growth in scenarios with 10% decrease or increase in rainfall. The probability distribution functions Weibull 2 and 3 parameters and Johnson SB for different methods were fitted. Correlation between the fitted parameters with age was evaluated. Dominant height growth behavior was evaluated to check if thinned stand changes its growth when compared to a non-thinned stands. The stand variables dominant height and basal area were projected and simultaneously predicted and projected, respectively. Individual tree equations were fitted, which were fitted as functions of stand level variables in order to decrease the error propagation. R software was used to fit all the proposed models and consequently all the fitted models were evaluated by their parameters significance (F-test) and graphs of predicted values in relation to the observed values around the 1:1 line. Thus, the prognosis system was made by two ways, first one using the full data set, and for the second one the dataset was restricted at age 7.5. Increase and decrease in 20% of rainfall were assessed by updating the site index function. Method of moments was the most precise to describe the diameter distribution for every age in eucalyptus stands for Johnson SB and Weibull 2 parameters pdfs. When observed for each pdf the correlation for their fitted parameters with age, we noticed that shape parameters for a thinned stand were no longer correlated with age, differently of non-thinned stands. Thus, thinning effect was accounted in the basal area prediction and projection modeling. This result emphasized the necessity of applying the Parameter Recovery method in order to assess differences and capture the right pattern for thinned and non-thinned stands in the future. Dominant height was not influenced by thinning intensity. Therefore the fitted Chapman-Richards model did not account for a stand being thinned or not. All the fitted equations behaved with good precision, no matter using full or precocious dataset. The prognosis system using full and/or precocious date set was evaluated for when using Parameter Recovery method for Sb and Weibull pdfs, and by then, graphical analysis and precision statistics showed appropriated results. Finally, the increase or decrease in rainfall regime were observed for eucalyptus stand yields and we may notice how important is to observe this effect, since the growth pattern is strictly affected by water.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)