911 resultados para Wavelet-Maxima
Resumo:
Images of an object under different illumination are known to provide strong cues about the object surface. A mathematical formalization of how to recover the normal map of such a surface leads to the so-called uncalibrated photometric stereo problem. In the simplest instance, this problem can be reduced to the task of identifying only three parameters: the so-called generalized bas-relief (GBR) ambiguity. The challenge is to find additional general assumptions about the object, that identify these parameters uniquely. Current approaches are not consistent, i.e., they provide different solutions when run multiple times on the same data. To address this limitation, we propose exploiting local diffuse reflectance (LDR) maxima, i.e., points in the scene where the normal vector is parallel to the illumination direction (see Fig. 1). We demonstrate several noteworthy properties of these maxima: a closed-form solution, computational efficiency and GBR consistency. An LDR maximum yields a simple closed-form solution corresponding to a semi-circle in the GBR parameters space (see Fig. 2); because as few as two diffuse maxima in different images identify a unique solution, the identification of the GBR parameters can be achieved very efficiently; finally, the algorithm is consistent as it always returns the same solution given the same data. Our algorithm is also remarkably robust: It can obtain an accurate estimate of the GBR parameters even with extremely high levels of outliers in the detected maxima (up to 80 % of the observations). The method is validated on real data and achieves state-of-the-art results.
Resumo:
Wavelet analysis offers an alternative to Fourier based time-series analysis, and is particularly useful when the amplitudes and periods of dominant cycles are time dependent. We analyse climatic records derived from oxygen isotopic ratios of marine sediment cores with modified Morlet wavelets. We use a normalization of the Morlet wavelets which allows direct correspondence with Fourier analysis. This provides a direct view of the oscillations at various frequencies, and illustrates the nature of the time-dependence of the dominant cycles.
Resumo:
In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.
Resumo:
Von Dr. C. Freiherr von Tubeuf
Resumo:
The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink.
Resumo:
The California Current System encompasses a southward flowing current which is perturbed by ubiquitous mesoscale variability. The extent to which latitudinal patterns of physical variability are reflected in the distribution of biological parameters is poorly known. To investigate the latitudinal distribution of chlorophyll variance, a wavelet analysis is applied to nearly 9 years (October 1997 to July 2006) of 1-km-resolution Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll concentration data at 5-day resolution. Peaks in the latitudinal distribution of chlorophyll variance coincide with features of the coastal topography. Maxima in variance are located offshore of Vancouver Island and downstream of Heceta Bank, Cape Blanco, Point Arena, and possibly Point Conception. An analysis of dominant wavelengths in the chlorophyll data reveals a transfer of energy into smaller scales is generated in the vicinity of the coastal capes. The latitudinal distribution of variance in sea level anomaly corresponds closely to the chlorophyll variance in the nearshore region (<100 km offshore), suggesting that the same processes determine the distribution of both. Farther offshore, there is no correspondence between latitudinal patterns of sea level anomaly and chlorophyll variance. This likely represents a transition from physical to biological control of the phytoplankton distribution.
Resumo:
During the drilling of the southern Australian continental margin (Leg 182 of the Ocean Drilling Program), fluids with unusually high salinities (to 106?) were encountered in Miocene to Pleistocene sediments. At three sites (1127, 1129, and 1131), high contents of H2S (to 15%), CH4 (50%), and CO2 (70%) were also encountered. These levels of H2S are the highest yet reported during the history of either the Deep Sea Drilling Project or the Ocean Drilling Program. The high concentrations of H2S and CH4 are associated with anomalous Na+/Cl- ratios in the pore waters. Although hydrates were not recovered, and despite the shallow water depth of these sites (200-400 m) and relative warm bottom water temperatures (11-14°C), we believe that these sites possess disseminated H2S-dominated hydrates. This contention is supported by calculations using the measured gas concentrations and temperatures of the cores, and depths of recovery. High concentrations of H2S necessary for the formation of hydrates under these conditions were provided by the abundant (SO4)2- caused by the high salinities of the pore fluids, and the high concentrations of organic material. One hypothesis for the origin of these fluids is that they were formed on the adjacent continental shelf during previous lowstands of sea level and were forced into the sediments under the influence of hydrostatic head.
Resumo:
This work is motivated in providing and evaluating a fusion algorithm of remotely sensed images, i.e. the fusion of a high spatial resolution panchromatic image with a multi-spectral image (also known as pansharpening) using the dual-tree complex wavelet transform (DT-CWT), an effective approach for conducting an analytic and oversampled wavelet transform to reduce aliasing, and in turn reduce shift dependence of the wavelet transform. The proposed scheme includes the definition of a model to establish how information will be extracted from the PAN band and how that information will be injected into the MS bands with low spatial resolution. The approach was applied to Spot 5 images where there are bands falling outside PAN’s spectrum. We propose an optional step in the quality evaluation protocol, which is to study the quality of the merger by regions, where each region represents a specific feature of the image. The results show that DT-CWT based approach offers good spatial quality while retaining the spectral information of original images, case SPOT 5. The additional step facilitates the identification of the most affected regions by the fusion process.
Resumo:
A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.