898 resultados para Water Management


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We thank Hilberts and Troch [2006] for their comment on our paper [Cartwright et al, 2005]. Before proceeding with our specific replies to the comments we would first like to clarify the definitions and meanings of equations (1)-(3) as presented by Hilberts and Troch [2006]. First, equation (1) is the fundamental definition of the (complex) effective porosity as derived by Nielsen and Perrochet [2000]. Equations (2) and (3), however, represent the linear frequency response function of the water table in the sand column responding to simple harmonic forcing. This function, which was validated by Nielsen and Perrochet [2000], provides an alternative method for estimating the complex effective porosity from the experimental sand column data in the absence of direct measurements of h_(tot) (which are required if equation (1) is to be used).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Issues around water – its quality, use, availability and environmental value – can be a major point of tension between mineral projects and local communities. Failure to manage these issues appropriately can jeopardise the obtaining of regulatory approvals for new projects and place at risk the ‘social licence to operate’ of existing operations. Conversely, there may also be significant opportunities for companies to engage constructively with communities over water issues and to make a positive contribution to the sustainable development of these communities. Using case studies, this paper will explore the various types of social risks and opportunities associated with water and mineral resource development and identify key learnings relating to the management of these issues.