980 resultados para Water Extraction
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ∼375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (εSr SW = +13.8 to +41.6, where εSr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.
Resumo:
Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy (PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used to observe the features of the flakes. N-methyl-2-pyrrolidinone (NMP), dimethylformamide (DMF), and isopropanol are used as co-solvents to enhance the supercritical carbon dioxide treatment. As a result, the PCS results show that the flakes obtained from high critical density treatment (low temperature and high pressure) are more stable due to more negative charges of zeta potential, but have smaller sizes than those from low critical density (high temperature and low pressure). However, when an additional 1-hour sonication is applied, the size of the flakes from low critical density treatment becomes smaller than those from high critical density treatment. This is probably due to more CO2 molecules stacked between the layers of the graphitic flakes. The zeta potentials of the sonicated samples were slightly more negative than nonsonicated samples. NMP and DMF co-solvents maintain stability and prevented reaggregation of the flakes better than isopropanol. The flakes tend to be larger and more stable as the treatment time increases since larger flat area of graphite is exfoliated. In these experiments, the temperature has more impact on the flakes than pressure. The BET surface area resultsshow that CO2 penetrates the graphite layers more than N2. Moreover, the negative surface area of the treated graphite indicates that the CO2 molecules may be adsorbed between the graphite layers during supercritical treatment. The FE-SEM and AFM images show that the flakes have various shapes and sizes. The effects of surfactants can be observed on the FE-SEM images of the samples in one percent by weight solution of SDBS in water since the sodium dodecylbenzene sulfonate (SDBS) residue covers all of the remaining flakes. The AFM images show that the vertical thickness of the graphitic flakes can ranges from several nanometers (less than ten layers thick), to more than a hundred nanometers. In conclusion, supercritical carbon dioxide treatment is a promising step compared to mechanical and chemical exfoliation techniques in the large scale production of thin graphitic flake, breaking down the graphite flakes into flakes only a fewer graphene layers thick.
Resumo:
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.
Resumo:
A new technique to porewater extraction from claystone employs advective displacement of the in situ porewater by traced artificial porewater. Monitoring of tracer breakthrough yields species-specific transport properties. Results for Opalinus Clay from the Mont Terri Research Laboratory indicate that the chemical disturbances due to the method are minimal, and the observed significant differences in transport properties for Br– and 2H are in agreement with existing data. Sampling times are 2–4 months, and observation of tracer breakthrough takes 12–24 months at hydraulic conductivity of ∼10-13 m/s.
Resumo:
Several important fundamental and applied problems require a quantification of slow rates of groundwater flow. To resolve these problems helium appears to be a promising tracer. In this contribution we discuss a new approach, which gives the helium inventory in a rock – pore water system by using the relevant mineral record, i.e., without extraction and investigation of the porewater samples. Some U- and Th-poor minerals such as quartz (quartz separates from Permo-Carboniferous Formation, sandstone–shale interlayering, Molasses Basin, Northern Switzerland, hereafter PCF, are used in this study) contain excessive helium having migrated into their internal helium-accessible volume (HAV) from the surrounding porewater [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. These volumes are estimated by using helium as a nano-size penetrating tool, i.e., by saturation of the minerals with helium under controlled pressure–temperature conditions and subsequent measurements of the helium-saturated concentrations. In the quartz separates HAV/total volume ratios vary from 0.017% to 0.16%; along with the measured initial (unsaturated) He concentration the HAV gives the internal helium pressure, the mean value obtained for 7 samples (25 sample aliquots) is P=0.45F0.15 atm (1 r). The product of helium pressure and solubility (7.35_10_3 cc STP He/cc H2O for the temperature and salinity of PCF aquifers reported in [F.J. Pearson, W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Applied Isotope Hydrogeology–A Case Study in Northern Switzerland, Elsevier Amsterdam, 1991, 439 pp.]) is the mineral-derived He concentration in the respective porewater, CPW=0.0035F0.0017 cc He/cc H2O. This value is in full accord with measured He concentrations in PCF aquifers, CPCF, varying from 0.0045 to 0.0016 cc He/cc H2O. This agreement validates the proposed approach and also shows that the mineral–porewater helium–concentration equilibrium has been established. Indeed, estimates of the He-migration rates through our quartz samples show that in ~6000 years the internal pressure should equilibrate with He-concentration in related porewater of PCF, and this time interval is short compared to independent estimates [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. The helium inventory in the rock–porewater assemblage shows that helium abundance in pore waters is indeed important. In shale samples (with ~15% porosity) porewaters contain more helium than the host minerals altogether. Porewater heliumconcentration profiles, available from the mineral record, along with helium production rates are input parameters allowing model(s) of helium migration through a hydrological structure to be developed. Quite high helium concentrations in PCF porewaters imply slow removal mechanisms, which will be discussed elsewhere.
Resumo:
High-pressure mechanical squeezing was applied to sample pore waters from a sequence of highly indurated and overconsolidated sedimentary rocks in a drillcore from a deep borehole in NE Switzerland. The rocks are generally rich in clay minerals (28–71 wt.%), with low water contents of 3.5–5.6 wt.%, resulting in extremely low hydraulic conductivities of 10− 14–10− 13 m/s. First pore-water samples could generally be taken at 200 MPa, and further aliquots were obtained at 300, 400 and 500 MPa. Chemical and isotopic compositions of squeezed waters evolve with increasing pressure. Decreasing concentrations of Cl−, Br−, Na+ and K+ are explained by ion filtration due to the collapse of the pore space during squeezing. Increasing concentrations of Ca2 + and Mg2 + are considered to be a consequence of pressure-dependent solubilities of carbonate minerals in combination with sorption/desorption reactions. The pressure dependence was studied by model calculations considering equilibrium with carbonate minerals and the exchanger population on clay surfaces, and the trends observed in the experiments could be confirmed. The compositions of the squeezed waters were compared with results of independent methods, such as aqueous extraction and in-situ sampling of ground and pore waters. On this basis, it is concluded that the chemical and isotopic composition of pore water squeezed at the lowest pressure of 200 MPa closely represents that of the in-situ pore water. The feasibility of sampling pore waters with water contents down to 3.5 wt.% and possibly less opens new perspectives for studies targeted at palaeo-hydrogeological investigations using pore-water compositions in aquitards as geochemical archives.
Resumo:
Several lake ice phenology studies from satellite data have been undertaken. However, the availability of long-term lake freeze-thaw-cycles, required to understand this proxy for climate variability and change, is scarce for European lakes. Long time series from space observations are limited to few satellite sensors. Data of the Advanced Very High Resolution Radiometer (AVHRR) are used in account of their unique potential as they offer each day global coverage from the early 1980s expectedly until 2022. An automatic two-step extraction was developed, which makes use of near-infrared reflectance values and thermal infrared derived lake surface water temperatures to extract lake ice phenology dates. In contrast to other studies utilizing thermal infrared, the thresholds are derived from the data itself, making it unnecessary to define arbitrary or lake specific thresholds. Two lakes in the Baltic region and a steppe lake on the Austrian–Hungarian border were selected. The later one was used to test the applicability of the approach to another climatic region for the time period 1990 to 2012. A comparison of the extracted event dates with in situ data provided good agreements of about 10 d mean absolute error. The two-step extraction was found to be applicable for European lakes in different climate regions and could fill existing data gaps in future applications. The extension of the time series to the full AVHRR record length (early 1980 until today) with adequate length for trend estimations would be of interest to assess climate variability and change. Furthermore, the two-step extraction itself is not sensor-specific and could be applied to other sensors with equivalent near- and thermal infrared spectral bands.
Resumo:
An accurate and efficient determination of the highly toxic Cr(VI) in solid materials is important to determine the total Cr(VI) inventory of contaminated sites and the Cr(VI) release potential from such sites into the environment. Most commonly, total Cr(VI) is extracted from solid materials following a hot alkaline extraction procedure (US EPA method 3060A) where a complete release of water-extractable and sparingly soluble Cr(VI) phase is achieved. This work presents an evaluation of matrix effects that may occur during the hot alkaline extraction and in the determination of the total Cr(VI) inventory of variably composed contaminated soils and industrial materials (cement, fly ash) and is compared to water-extractable Cr(VI) results. Method validation including multiple extractions and matrix spiking along with chemical and mineralogical characterization showed satisfying results for total Cr(VI) contents for most of the tested materials. However, unreliable results were obtained by applying method 3060A to anoxic soils due to the degradation of organic material and/or reactions with Fe2+-bearing mineral phases. In addition, in certain samples discrepant spike recoveries have to be also attributed to sample heterogeneity. Separation of possible extracted Cr(III) by applying cation-exchange cartridges prior to solution analysis further shows that under the hot alkaline extraction conditions only Cr(VI) is present in solution in measurable amounts, whereas Cr(III) gets precipitated as amorphous Cr(OH)3(am). It is concluded that prior to routine application of method 3060A to a new material type, spiking tests are recommended for the identification of matrix effects. In addition, the mass of extracted solid material should to be well adjusted to the heterogeneity of the Cr(VI) distribution in the material in question.
Resumo:
Herbicides are used to control the growth of weeds along highways, power lines, and many other urban locations. Exposure to herbicides has been linked to adverse health outcomes. This study was initiated to pretest for the presence of herbicides in multiple water sources near intersections in a corridor in the Northwest Harris County (specifically in the Highway 6/FM 1960, North Freeway 45, US 290 and S 99 corridor). Roadside water and tap water samples were collected and analyzed for herbicides using the established Environmental Protection Agency (EPA) Method 515.4: "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Micro-extraction, Derivatization, and Fast Gas Chromatography with Electron Capture Detection." A standard operating procedure (adapted from the US EPA Method 515.4) was developed for subsequent, larger studies of environmental fate of herbicides and non-occupational exposure risks. Preliminary testing of 16 water samples was performed to pretest the existence of trace herbicides; all concentrations that were greater than the minimum reporting limits of each analyte are reported with a 99 percent confidence. This study failed to find concentrations above the limits of detection of the method in any of the samples collected on June 15, 2008. However, this does not indicate that the waters around the NW Harris County are free of herbicides and metabolites. A larger and repeated sampling in the region would be necessary to make that claim. ^