978 resultados para Waste products


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the diffusion of high technology products such as PCs, digital cameras and DVD players it is necessary to consider the dynamics of successive generations of technology. From the consumer’s perspective, these technology changes may manifest themselves as either a new generation product substituting for the old (for instance digital cameras) or as multiple generations of a single product (for example PCs). To date, research has been confined to aggregate level sales models. These models consider the demand relationship between one generation of a product and a successor generation. However, they do not give insights into the disaggregate-level decisions by individual households – whether to adopt the newer generation, and if so, when. This paper makes two contributions. It is the first large scale empirical study to collect household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in contrast to traditional analysis in diffusion research that conceptualizes technology substitution as an “adoption of innovation” type process, we propose that from a consumer’s perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing generation I product with generation II). Key Propositions In some cases, successive generations are clear “substitutes” for the earlier generation (e.g. PCs Pentium I to II to III ). More commonly the new generation II technology is a “partial substitute” for existing generation I technology (e.g. DVD players and VCRs). Some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Moreover, drawing on adoption theory consumer innovativeness is the most important consumer characteristic for adoption timing of new products. Hence, we hypothesize consumer innovativeness to influence the timing of both additional and substitute generation II purchases but to have a stronger impact on additional generation II purchases. We further propose that substitute generation II purchases act partially as a replacement purchase for the generation I product. Thus, we hypothesize that households with older generation I products will make substitute generation II purchases earlier. Methods We employ Cox hazard modeling to study factors influencing the timing of a household’s adoption of generation II products. A separate hazard model is conducted for additional and substitute purchases. The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include size and income of household, age and education of decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases and substitute purchases. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD players and a strong influence for PCs/notebooks. Yet, also as hypothesized, there was no influence on additional purchases. This implies that there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. For substitute purchases, product age is a key driver. Therefore marketers of high technology products can utilize data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been recognised that government and public sector services suffer an innovation deficit compared to private or market-based services. This paper argues that this can be explained as an unintended consequence of the concerted public sector drive toward the elimination of waste through efficiency, accountability and transparency. Yet in an evolving economy this can be a false efficiency, as it also eliminates the 'good waste' that is a necessary cost of experimentation. This results in a systematic trade0off in the public sector between the static efficiency of minimizing the misuse of public resources and the dynamic efficiency of experimentation. this is inherently biased against risk and uncertainty and therein, explains why governments find service innovation so difficult. In the drive to eliminate static inefficiencies, many political systems have susequently overshot and stifled policy innovation. I propose the 'Red Queen' solution of adaptive economic policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The call for the cross cultural examination and validation of commonly accepted relationships within consumer behaviour is strengthening. Consequently, this paper seeks to address this call by examining consumer risk perceptions, reliance on country of origin information and willingness to buy Genetically Modified (GM) food products on Australian and South Korean consumers. Findings indicate a number of cross cultural similarities and differences that have both theoretical and practical implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetically modified (GM) food products are the source of much controversy and in the context of consumer behaviour, the way in which consumers perceive such food products is of paramount importance both theoretically and practically. Despite this, relatively little research has focused on GM food products from a consumer perspective, and as such, this study seeks to better understand what effects consumer willingness to buy GM food products in Australian consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major challenge of the 21st century will be to generate transportation fuels using feedstocks such as lignocellulosic waste materials as a substitute for existing fossil and nuclear fuels. The advantages of lignocellulosics as a feedstock material are that they are abundant, sustainable and carbon-neutral. To improve the economics of producing liquid transportation fuels from lignocellulosic biomass, the development of value-added products from lignin, a major component of lignocellulosics, is necessary. Lignins produced from black liquor through the fractionation of sugarcane bagasse with soda and organic solvents have been characterised by physical, chemical and thermal means. The soda lignin fractions have different physico-chemical and thermal properties from one another. Some of these properties have been compared to bagasse lignin extracted with aqueous ethanol.