944 resultados para WATER-STRESS INDEX


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation addresses sustainability of rapid provision of safe water and sanitation required to meet the Millennium Development Goals. Review of health-related literature and global statistics demonstrates engineers' role in achieving the MDGs. This review is followed by analyses relating to social, environmental, and health aspects of meeting MDG targets. Analysis of national indicators showed that inadequate investment, poor or nonexistent policies and governance are challenges to global sanitation coverage in addition to lack of financial resources and gender disparity. Although water availability was not found to be a challenge globally, geospatial analysis demonstrated that water availability is a potentially significant barrier for up to 46 million people living in urban areas and relying on already degraded water resources for environmental income. A daily water balance model incorporating the National Resources Conservation Services curve number method in Bolivian watersheds showed that local water stress is linked to climate change because of reduced recharge. Agricultural expansion in the region slightly exacerbates recharge reductions. Although runoff changes will range from -17% to 14%, recharge rates will decrease under all climate scenarios evaluated (-14% to -27%). Increasing sewer coverage may place stress on the readily accessible natural springs, but increased demand can be sustained if other sources of water supply are developed. This analysis provides a method for hydrological analysis in data scarce regions. Data required for the model were either obtained from publicly available data products or by conducting field work using low-cost methods feasible for local participants. Lastly, a methodology was developed to evaluate public health impacts of increased household water access resulting from domestic rainwater harvesting, incorporating knowledge of water requirements of sanitation and hygiene technologies. In 37 West African cities, domestic rainwater harvesting has the potential to reduce diarrheal disease burden by 9%, if implemented alone with 400 L storage. If implemented in conjunction with point of use treatment, this reduction could increase to 16%. The methodology will contribute to cost-effectiveness evaluations of interventions as well as evaluations of potential disease burden resulting from reduced water supply, such as reductions observed in the Bolivian communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research into families of children and young people with disability maintain that parents or caregivers seem to experience higher levels of global stress than parents of children without disabilities, thereby presenting a high risk of developing disorders in their health and quality of life. The aim of this study is to understand the differences in parental stress and social support among groups of parents whose children have different disabilities in the context of parental adjustment to disability. Considering that adjustment is related to the effectiveness with which the family uses its resources and the support of their social network, we intend to analyse the differences of stress and social support among groups of parents of children with different problems and to clarify the relationships between the variables under study in order to adapt family intervention strategies. For this purpose a comparative, descriptive-correlational study was undertaken. The convenience sample included 152 parents of children with different disabilities (82 with intellectual disability, 37 with motor problems and 33 with autism) supported by schools and institutions in Viseu. The instruments used were: a Portuguese version of the Parenting Stress Index (Abidin, 1995), the Social Support Questionnaire – short version (Pinheiro & Ferreira, 2001) and a Parental Questionnaire (demographic and family data). Data were collected in schools and institutions that support people with disabilities, located in the Municipality of Viseu (Portugal). The results revealed significant differences between groups of parents in the partial results of parental stress, specifically in the Hyperactivity/Distract (DI), Acceptability (AC) and Adaptability (AD), dimensions of the Child Domain subscale (CD stress) and the Role Restriction (RO), dimension of Parent Domain subscale (PD stress). With regard to social support dimensions, we found significant differences between parents in the extent and availability of the social support network (SSQN).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

tWater use control methods and water resources planning are of high priority. In irrigated agriculture, theright way to save water is to increase water use efficiency through better management. The present workvalidates procedures and methodologies using remote sensing to determine the water availability in thesoil at each moment, giving the opportunity for the application of the water depth strictly necessaryto optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied tothe Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtainedby satellite and integrated with atmosphere and crop parameters to calculate biophysical indicatorsand indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, andKcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement,together with the opportunity and the amount of irrigation water to allocate. Although remote sensingdata available from satellite imagery presented some practical constraints, the study could contribute tothe validation of a new methodology that can be used for irrigation management of a large irrigated area,easier and at lower costs than the traditional FAO recommended crop coefficients method. The remotesensing based methodology can also contribute to significant saves of irrigation water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fruit crops are an important resource for food security, since more than being nutrient they are also a source of natural antioxidant compounds, such as polyphenols and vitamins. However, fruit crops are also among the cultivations threatened by the harmful effects of climate change This study had the objective of investigating the physiological effects of deficit irrigation on apple (2020-2021), sour cherry (2020-2021-2022) and apricot (2021-2022) trees, with a special focus on fruit nutraceutical quality. On each trial, the main physiological parameters were monitored along the growing season: i) stem and leaf water potentials; ii) leaf gas exchanges; iii) fruit and shoot growth. At harvest, fruit quality was evaluated especially in terms of fruit size, flesh firmness and soluble solids content. Moreover, it was performed: i) total phenolic content determination; ii) anthocyanidin concentration evaluation; and iii) untargeted metabolomic study. Irrigation scheduling in apricot, apple and sour cherry is surely overestimated by the decision support system available in Emilia-Romagna region. The water stress imposed on different fruit crops, each during two years of study, showed as a general conclusion that the decrease in the irrigation water did not show a straightforward decrease in plant physiological performance. This can be due to the miscalculation of the real water needs of the considered fruit crops. For this reason, there is the need to improve this important tool for an appropriate water irrigation management. Furthermore, there is also the need to study the behaviour of fruit crops under more severe deficit irrigations. In fact, it is likely that the application of lower water amounts will enhance the synthesis of specialized metabolites, with positive repercussion on human health. These hypotheses must be verified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper a water quality index is developed to subsidize management actions in the Atibaia River for upon protection of aquatic organisms. This index is composed of two measurable environmental parameters normaly, ammonia and dissolved oxygen, the latter representing the contribution of organic matter. Concentrations of these two variables were normalized on a scale from 0 to 100 and translated into statements of quality (excellent, good, regular, bad and very bad). The index was applied to three monitoring points in the Atibaia River and compared to other indices used by the State of São Paulo Environmental Agency (CETESB). The results showed that the degradation in this watershed follows the urban population density. The developed index is more restricted than the other ones routinely used to infer water quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of temperature and rainfall during seed development in modulating subsequent seed dormancy status was studied for Lolium rigidum Gaud. (annual ryegrass). Climatic parameters relating to geographic origin were compared with annual ryegrass seed dormancy characteristics for seeds collected from 12 sites across the southern Western Australian cropping region. Seed germination was tested soon after collection and periodically during subsequent after-ripening. Temperature in the year of seed development and long-term rainfall patterns showed correlations with aspects of seed dormancy, particularly the proportion of seeds remaining dormant following 5 months of after-ripening. Consequently, for one population the temperature (warm/cool) and water supply (adequate/reduced) during seed development were manipulated to investigate the role of maternal environment in the quantity and dormancy characteristics of seeds produced. Seeds from plants grown at warm temperatures were fewer in number, weighed less, and were less dormant than those from plants grown at cool temperature. Seeds that developed under both cool temperature and reduced moisture conditions lost dormancy faster than seeds from well-watered plants. Seed maturation environment, particularly temperature, can have a significant effect on annual ryegrass seed numbers and seed dormancy characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-rone temperatures (RZTs): a constant 20 degreesC-RZT and a fluctuating ambient (A-) RZT from 23-40 degreesC, Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (g(s)), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio F-v/F-m than 20 degreesC-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although F-v/F-m did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (g(s) (sat)) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure, However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O-2 evolution (P-max), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P-max during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Participatory plant breeding (PPB) has been suggested as an effective alternative to formal plant breeding (FPB) as a breeding strategy for achieving productivity gains under low input conditions. With genetic progress through PPB and FPB being determined by the same genetic variables, the likelihood of success of PPB approaches applied in low input target conditions was analyzed using two case studies from FPB that have resulted in significant productivity gains under low input conditions: (1) breeding tropical maize for low input conditions by CIMMYT, and (2) breeding of spring wheat for the highly variable low input rainfed farming systems in Australia. In both cases, genetic improvement was an outcome of long-term investment in a sustained research effort aimed at understanding the detail of the important environmental constraints to productivity and the plant requirements for improved adaptation to the identified constraints, followed up by the design and continued evaluation of efficient breeding strategies. The breeding strategies used differed between the two case studies but were consistent in their attention to the key determinants of response to selection: (1) ensuring adequate sources of genetic variation and high selection pressures for the important traits at all stages of the breeding program, (2) use of experimental procedures to achieve high levels of heritability in the breeding trials, and (3) testing strategies that achieved a high genetic correlation between performance of germplasm in the breeding trials and under on-farm conditions. The implications of the outcomes from these FPB case studies for realizing the positive motivations for adopting PPB strategies are discussed with particular reference for low input target environment conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies have shown that a negative relationship exists between transpiration efficiency (TE) and carbon isotope discrimination (Delta) and between TE and specific leaf area (SLA) in Stylosanthes scabra, A glasshouse experiment was conducted to confirm these relationships in an F-2 population and to study the causal nature of these relationships through quantitative trait loci (QTL) analysis, One hundred and twenty F-2 genotypes from a cross between two genotypes within S. scabra were used. Three replications for each genotype were maintained through vegetative propagation, Water stress was imposed by maintaining plants at 40% of field capacity for about 45 d. To facilitate QTL analysis, a genetic linkage map consisting of 151 RAPD markers was developed, Results from this study show that Delta was significantly and negatively correlated with TE and biomass production. Similarly, SLA showed significant negative correlation with TE and biomass production, Most of the QTL for TE and Delta were present on linkage groups 5 and 11. Similarly, QTL for SLA, transpiration and biomass productivity traits were clustered on linkage groups 13 and 24, One unlinked marker was also associated with these traits, There were several markers coincident between different traits, At all the coincident QTL, the direction of QTL effects was consistent with phenotypic data, At the coincident markers between TE and Delta, high alleles of TE were associated with low alleles of Delta. Similarly, low alleles of SLA were associated with high alleles of biomass productivity traits and transpiration. At the coincident markers between trans-4-hydroxy-N-methyl proline (MHP) and relative water content (RWC), low alleles of MHP were associated with high alleles of RWC, This study suggests the causal nature of the relationship between TE and Delta. Phenotypic data and QTL, data show that SLA was more closely associated with biomass production than with TE, This study also shows that a cause-effect relationship may exist between SLA and biomass production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

White cypress-pine stands typically support sparse densities of shrubs and grasses. The commonly held opinion is that leaching of allelopathic chemical compounds from cypress-pine litter partly facilitates this exclusion. Germination and growth of cypress pine seedlings do not appear to be similarly affected. This study set out to determine whether cypress litter had a differential effect on germination and growth of cypress-pine seedlings and on associated ground-cover species. Glasshouse trials comparing seedling emergence under cypress- and artificial-litter layers were undertaken. Cypress-pine litter did not have an inhibitory effect on the germination or growth of ground-cover species. In most cases, seedling emergence was facilitated by the application of cypress-pine litter due to its ability to increase the water holding capacity of the underlying soil. Cypress litter did not promote growth of its own seedlings over its competitors except on coarse-textured soils where it provided an ameliorative function to water stress due to the soil's reduced water holding capacity. The inhibition of ground-cover species' germination and growth in pure cypress stands was suggested to be the result of high below-ground resource competition due to the pine's expansive root morphology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O estabelecimento e o crescimento inicial de espécies florestais no campo são fortemente afetados pela disponibilidade de água no solo e pela época de plantio, por isso, o presente trabalho estuda o impacto do déficit hídrico no crescimento de mudas de dois clones do híbrido Eucalyptus grandis x Eucalyptus urophylla, ambos submetidos a 4 níveis de déficit hídrico, em duas épocas de plantio. O estudo foi realizado na área experimental do Núcleo de Estudos e Difusão de Tecnologia em Florestas, Recursos Hídricos e Agricultura Sustentável (NEDTEC), do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), localizado no município de Jerônimo Monteiro. O trabalho foi realizado em duas épocas distintas, sendo a primeira no período de 09 de fevereiro a 09 de junho de 2009 e a segunda no período de 11 de julho a 07 de novembro de 2009, visando à realização das observações em diferentes condições de regime de radiação, déficit de pressão do vapor do ar, temperatura, umidade relativa do ar e velocidade do vento. O delineamento experimental utilizado foi o inteiramente ao acaso em parcelas subdivididas 2 x 4, alocando-se os 4 níveis de déficits hídricos na parcela principal e as 2 épocas nas subparcelas, com três repetições. Os manejos hídricos aplicados foram: Déficit 0 (D0) sem déficit, Déficit 1(D1) corte da irrigação aos 30 dias de experimentação, permanecendo até o final do experimento, Déficit 2 (D2) corte da irrigação aos 30 dias de experimentação, suspensão da irrigação por 60 dias e posterior retomada da irrigação por mais 30 dias; Déficit 3 (D3) corte da irrigação aos 60 dias de experimentação, prolongando até o final do experimento. Os dados experimentais foram submetidos à análise de variância, e quando significativas, as médias foram comparadas pelo teste de média Tukey a 5% de probabilidade, para cada clone estudado. Com este trabalho, foi possível avaliar o impacto de diferentes déficits hídricos, no crescimento inicial das plantas, em duas épocas do ano e avaliar o incremento no desenvolvimento das plantas durante a aplicação dos tratamentos, com retiradas de amostras médias de cada tratamento a cada 30 dias. As variáveis medidas nos dois experimentos foram altura total da planta, diâmetro ao nível do coleto, número de folhas, área foliar, matéria seca de folhas, matéria seca de haste e ramos, matéria seca de raízes e matéria seca total. Foram avaliadas as variáveis climáticas durante todo o período experimental, nas duas épocas, a fim de determinar a condição do clima em cada época. Para os dois clones estudados, em geral, os déficits hídricos promoveram a redução das variáveis morfológicas estudadas e a época experimental foi o fator que mais influenciou a redução do crescimento das plantas. Sendo que a Época 1 foi a que proporcionou resultados superiores, e a Época 2 foi a que prejudicou mais o desenvolvimento das plantas, reduzindo significativamente todas as variáveis morfológicas em todos os déficits hídricos, inclusive o D0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O estabelecimento e o crescimento inicial de espécies florestais no campo são fortemente afetados pela disponibilidade de água no solo e pela época de plantio, por isso, o presente trabalho estuda o impacto do déficit hídrico no crescimento de mudas de dois clones do híbrido Eucalyptus grandis x Eucalyptus urophylla, ambos submetidos a 4 níveis de déficit hídrico, em duas épocas de plantio. O estudo foi realizado na área experimental do Núcleo de Estudos e Difusão de Tecnologia em Florestas, Recursos Hídricos e Agricultura Sustentável (NEDTEC), do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), localizado no município de Jerônimo Monteiro. O trabalho foi realizado em duas épocas distintas, sendo a primeira no período de 09 de fevereiro a 09 de junho de 2009 e a segunda no período de 11 de julho a 07 de novembro de 2009, visando à realização das observações em diferentes condições de regime de radiação, déficit de pressão do vapor do ar, temperatura, umidade relativa do ar e velocidade do vento. O delineamento experimental utilizado foi o inteiramente ao acaso em parcelas subdivididas 2 x 4, alocando-se os 4 níveis de déficits hídricos na parcela principal e as 2 épocas nas subparcelas, com três repetições. Os manejos hídricos aplicados foram: Déficit 0 (D0) sem déficit, Déficit 1(D1) corte da irrigação aos 30 dias de experimentação, permanecendo até o final do experimento, Déficit 2 (D2) corte da irrigação aos 30 dias de experimentação, suspensão da irrigação por 60 dias e posterior retomada da irrigação por mais 30 dias; Déficit 3 (D3) corte da irrigação aos 60 dias de experimentação, prolongando até o final do experimento. Os dados experimentais foram submetidos à análise de variância, e quando significativas, as médias foram comparadas pelo teste de média Tukey a 5% de probabilidade, para cada clone estudado. Com este trabalho, foi possível avaliar o impacto de diferentes déficits hídricos, no crescimento inicial das plantas, em duas épocas do ano e avaliar o incremento no desenvolvimento das plantas durante a aplicação dos tratamentos, com retiradas de amostras médias de cada tratamento a cada 30 dias. As variáveis medidas nos dois experimentos foram altura total da planta, diâmetro ao nível do coleto, número de folhas, área foliar, matéria seca de folhas, matéria seca de haste e ramos, matéria seca de raízes e matéria seca total. Foram avaliadas as variáveis climáticas durante todo o período experimental, nas duas épocas, a fim de determinar a condição do clima em cada época. Para os dois clones estudados, em geral, os déficits hídricos promoveram a redução das variáveis morfológicas estudadas e a época experimental foi o fator que mais influenciou a redução do crescimento das plantas. Sendo que a Época 1 foi a que proporcionou resultados superiores, e a Época 2 foi a que prejudicou mais o desenvolvimento das plantas, reduzindo significativamente todas as variáveis morfológicas em todos os déficits hídricos, inclusive o D0.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esse estudo objetivou investigar, em regime de casa de vegetação, o desempenho fisiológico de duas cultivares jovens e enxertadas de seringueira (Hevea brasiliensis), submetidas à deficiência hídrica e posterior recuperação. Os parâmetros analisados foram o potêncial hídrico foliar (ψw), taxa de sobrevivência e crescimento após reidratação e a fluorescência transiente da clorofila a. Trinta dias após a aclimatação, o déficit hídrico foi iniciado pela supressão total da água até o potencial hídrico (ψw) atingir valores críticos (38 dias), seguido por 30 dias de reidratação. Os dois genótipos (RRIM600 e FX3864) apresentaram um comportamentos semelhantes de redução do ψw com o avanço da supressão hídrica. Entretanto, o genótipo FX3864 mostrou-se mais susceptível ao déficit hídrico comprovado por valores que demonstram deficiência no transporte de elétrons no etapa fotoquímica da fotossíntese e por uma menor taxa de sobrevivência após desidratação e menor crescimento e desenvolvimento após a reidratação. RRIM600 apresentou uma maior tolerância à imposição da supressão hídrica, confirmada pelos valores da maioria dos parâmetros analisados e pelo menor tempo necessário para sua recuperação.