978 resultados para Voter registration.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents different application scenarios for which the registration of sub-sequence reconstructions or multi-camera reconstructions is essential for successful camera motion estimation and 3D reconstruction from video. The registration is achieved by merging unconnected feature point tracks between the reconstructions. One application is drift removal for sequential camera motion estimation of long sequences. The state-of-the-art in drift removal is to apply a RANSAC approach to find unconnected feature point tracks. In this paper an alternative spectral algorithm for pairwise matching of unconnected feature point tracks is used. It is then shown that the algorithms can be combined and applied to novel scenarios where independent camera motion estimations must be registered into a common global coordinate system. In the first scenario multiple moving cameras, which capture the same scene simultaneously, are registered. A second new scenario occurs in situations where the tracking of feature points during sequential camera motion estimation fails completely, e.g., due to large occluding objects in the foreground, and the unconnected tracks of the independent reconstructions must be merged. In the third scenario image sequences of the same scene, which are captured under different illuminations, are registered. Several experiments with challenging real video sequences demonstrate that the presented techniques work in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

wo methods for registering laser-scans of human heads and transforming them to a new semantically consistent topology defined by a user-provided template mesh are described. Both algorithms are stated within the Iterative Closest Point framework. The first method is based on finding landmark correspondences by iteratively registering the vicinity of a landmark with a re-weighted error function. Thin-plate spline interpolation is then used to deform the template mesh and finally the scan is resampled in the topology of the deformed template. The second algorithm employs a morphable shape model, which can be computed from a database of laser-scans using the first algorithm. It directly optimizes pose and shape of the morphable model. The use of the algorithm with PCA mixture models, where the shape is split up into regions each described by an individual subspace, is addressed. Mixture models require either blending or regularization strategies, both of which are described in detail. For both algorithms, strategies for filling in missing geometry for incomplete laser-scans are described. While an interpolation-based approach can be used to fill in small or smooth regions, the model-driven algorithm is capable of fitting a plausible complete head mesh to arbitrarily small geometry, which is known as "shape completion". The importance of regularization in the case of extreme shape completion is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article asks if voters' participation in federal elections is lower in the new Länder (East Germany) than in the old Länder (West Germany). It is assumed that voters in the new Länder are less convinced they can influence politics by voting. Using the perspective of cognitive psychology the article stresses differences in individual interpretations of the election context among citizens of both the new and old Länder. Furthermore, it is argued that the strength of the expected influence by voting depends on the structure and direction of individuals' beliefs in their competence and control as well as their belief in causality and self-efficacy. These beliefs may differ among voters in the new and old Länder. For empirical analysis, the article uses data from the German General Social Survey 1998.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article seeks to contribute to the illumination of the so-called 'paradox of voting' using the German Bundestag elections of 1998 as an empirical case. Downs' model of voter participation will be extended to include elements of the theory of subjective expected utility (SEU). This will allow a theoretical and empirical exploration of the crucial mechanisms of individual voters' decisions to participate, or abstain from voting, in the German general election of 1998. It will be argued that the infinitely low probability of an individual citizen's vote to decide the election outcome will not necessarily reduce the probability of electoral participation. The empirical analysis is largely based on data from the ALLBUS 1998. It confirms the predictions derived from SEU theory. The voters' expected benefits and their subjective expectation to be able to influence government policy by voting are the crucial mechanisms to explain participation. By contrast, the explanatory contribution of perceived information and opportunity costs is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative imaging with 18F-FDG PET/CT has the potential to provide an in vivo assessment of response to radiotherapy (RT). However, comparing tissue tracer uptake in longitudinal studies is often confounded by variations in patient setup and potential treatment induced gross anatomic changes. These variations make true response monitoring for the same anatomic volume a challenge, not only for tumors, but also for normal organs-at-risk (OAR). The central hypothesis of this study is that more accurate image registration will lead to improved quantitation of tissue response to RT with 18F-FDG PET/CT. Employing an in-house developed “demons” based deformable image registration algorithm, pre-RT tumor and parotid gland volumes can be more accurately mapped to serial functional images. To test the hypothesis, specific aim 1 was designed to analyze whether deformably mapping tumor volumes rather than aligning to bony structures leads to superior tumor response assessment. We found that deformable mapping of the most metabolically avid regions improved response prediction (P<0.05). The positive predictive power for residual disease was 63% compared to 50% for contrast enhanced post-RT CT. Specific aim 2 was designed to use parotid gland standardized uptake value (SUV) as an objective imaging biomarker for salivary toxicity. We found that relative change in parotid gland SUV correlated strongly with salivary toxicity as defined by the RTOG/EORTC late effects analytic scale (Spearman’s ρ = -0.96, P<0.01). Finally, the goal of specific aim 3 was to create a phenomenological dose-SUV response model for the human parotid glands. Utilizing only baseline metabolic function and the planned dose distribution, predicting parotid SUV change or salivary toxicity, based upon specific aim 2, became possible. We found that the predicted and observed parotid SUV relative changes were significantly correlated (Spearman’s ρ = 0.94, P<0.01). The application of deformable image registration to quantitative treatment response monitoring with 18F-FDG PET/CT could have a profound impact on patient management. Accurate and early identification of residual disease may allow for more timely intervention, while the ability to quantify and predict toxicity of normal OAR might permit individualized refinement of radiation treatment plan designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear viscoelastic image registration algorithm based on the demons paradigm and incorporating inverse consistent constraint (ICC) is implemented. An inverse consistent and symmetric cost function using mutual information (MI) as a similarity measure is employed. The cost function also includes regularization of transformation and inverse consistent error (ICE). The uncertainties in balancing various terms in the cost function are avoided by alternatively minimizing the similarity measure, the regularization of the transformation, and the ICE terms. The diffeomorphism of registration for preventing folding and/or tearing in the deformation is achieved by the composition scheme. The quality of image registration is first demonstrated by constructing brain atlas from 20 adult brains (age range 30-60). It is shown that with this registration technique: (1) the Jacobian determinant is positive for all voxels and (2) the average ICE is around 0.004 voxels with a maximum value below 0.1 voxels. Further, the deformation-based segmentation on Internet Brain Segmentation Repository, a publicly available dataset, has yielded high Dice similarity index (DSI) of 94.7% for the cerebellum and 74.7% for the hippocampus, attesting to the quality of our registration method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent treatment planning studies have demonstrated the use of physiologic images in radiation therapy treatment planning to identify regions for functional avoidance. This image-guided radiotherapy (IGRT) strategy may reduce the injury and/or functional loss following thoracic radiotherapy. 4D computed tomography (CT), developed for radiotherapy treatment planning, is a relatively new imaging technique that allows the acquisition of a time-varying sequence of 3D CT images of the patient's lungs through the respiratory cycle. Guerrero et al. developed a method to calculate ventilation imaging from 4D CT, which is potentially better suited and more broadly available for IGRT than the current standard imaging methods. The key to extracting function information from 4D CT is the construction of a volumetric deformation field that accurately tracks the motion of the patient's lungs during the respiratory cycle. The spatial accuracy of the displacement field directly impacts the ventilation images; higher spatial registration accuracy will result in less ventilation image artifacts and physiologic inaccuracies. Presently, a consistent methodology for spatial accuracy evaluation of the DIR transformation is lacking. Evaluation of the 4D CT-derived ventilation images will be performed to assess correlation with global measurements of lung ventilation, as well as regional correlation of the distribution of ventilation with the current clinical standard SPECT. This requires a novel framework for both the detailed assessment of an image registration algorithm's performance characteristics as well as quality assurance for spatial accuracy assessment in routine application. Finally, we hypothesize that hypo-ventilated regions, identified on 4D CT ventilation images, will correlate with hypo-perfused regions in lung cancer patients who have obstructive lesions. A prospective imaging trial of patients with locally advanced non-small-cell lung cancer will allow this hypothesis to be tested. These advances are intended to contribute to the validation and clinical implementation of CT-based ventilation imaging in prospective clinical trials, in which the impact of this imaging method on patient outcomes may be tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term surface ECG is routinely used to diagnose paroxysmal arrhythmias. However, this method only provides information about the heart's electrical activity. To this end, we investigated a novel esophageal catheter that features synchronous esophageal ECG and acceleration measurements, the latter being a record of the heart's mechanical activity. The acceleration data were quantified in a small study and successfully linked to the activity sequences of the heart in all subjects. The acceleration signals were additionally transformed into motion. The extracted cardiac motion was proved to be a valid reference input for an adaptive filter capable of removing relevant baseline wandering in the recorded esophageal ECGs. Taking both capabilities into account, the proposed recorder might be a promising tool for future long-term heart monitoring.