966 resultados para Vortex Dislocation
Resumo:
Shear layers shed by aircraft wings roll up into vortices. A similar, though far less common, phenomenon can occur in the wake of a turbomachine blade. This paper presents experimental data from a new single stage turbine that has been commissioned at the Whittle Laboratory. Two low aspect ratio stators have been tested with the same rotor row. Surface flow visualisation illustrates the extremely strong secondary flows present in both NGV designs. These secondary flows lead to conventional passage vortices but also to an intense vortex sheet which is shed from the trailing edge of the blades. Pneumatic probe traverse show how this sheet rolls up into a concentrated vortex in the second stator design, but not in the first. A simple numerical experiment is used to model the shear layer instability and the effects of trailing edge shape and exit yaw angle distribution are investigated. It is found that the latter has a strong influence on shear layer rollup: inhibiting the formation of a vortex downstream of NGV 1 but encouraging it behind NGV 2.
Resumo:
This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.
Resumo:
Cyclic loading of a plane strain mode I crack under small scale yielding is analyzed using discrete dislocation dynamics. The dislocations are all of edge character, and are modeled as line singularities in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of solutions for edge dislocations in a half-space and a non-singular complementary solution that enforces the boundary conditions, which is obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. An irreversible relation between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip is also specified, which permits crack growth to emerge naturally. It is found that crack growth can occur under cyclic loading conditions even when the peak stress intensity factor is smaller than the stress intensity required for crack growth under monotonic loading conditions; however below a certain threshold value of ΔKI no crack growth was seen.
Resumo:
Aircraft in high-lift configuration shed multiple vortices. These generally merge to form a downstream wake consisting of two counter-rotating vortices of equal strength. The understanding of the merger of two co-rotating trailing vortices is important in evaluating the separation criteria for different aircraft to prevent wake vortex hazards during landing and take-off. There is no existing theoretical method on the basis of which such norms can be set. The present study is aimed at gaining a better understanding of the behaviour of wake vortices behind the aircraft. Two dimensional studies are carried out using the vortex blob method and compared with Bertenyi's experiment. It is shown that inviscid two dimensional effects are insufficient to explain the observations. Three dimensional studies, using the vortex filament method, are applied to the same test case. Two Lamb-Oseen profile vortices of the same dimensions and initial separation as the experiment are allowed to evolve from a straight starting condition until a converged steady flow is achieved. The results obtained show good agreement with the experimental distance to merger. Core radius and separation behaviour is qualitatively similar to experiment, with the exception of rapid increases at first. This may be partially attributable to the choice of filament-element length, and recommended further work includes a convergence study for this parameter. Copyright © 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Experiments have been performed in a blowdown supersonic wind tunnel to investigate the effect of arrays of sub-boundary layer vortex generators placed upstream of a normal shock/ boundary layer interaction. The investigation makes use of a recovery shock wave and the naturally grown turbulent boundary layer on the wind tunnel floor. Experiments were performed at Mach numbers of 1.5 and 1.3 and a freestream Reynolds number of 28 × 106. Two types of vortex generators were investigated - wedge-shaped and arrays of counter-rotating vanes. It was found that at Mach 1.5 the vane-type VGs eliminated and the wedge-type VGs greatly reduced the separation bubble under the shock. When placed in the supersonic part of the flow both VGs caused a wave pattern consisting of a shock, re-expansion and shock. The re-expansion and double shocks are undesirable features since they equate to increased total pressure losses and hence increased -wave drag. Furthermore there are indications that the vortex intensity is reduced by the normal shock/ boundary layer interaction. When the shock was located directly over the VGs there was no re-expansion present, but the 'damping' effect of the shock on the vortex persisted. It appears that the vortices produced by the wedge-shaped VGs lift off the surface more rapidly. Similar results were observed at Mach 1.3, where the flow was unseparated.
Resumo:
Small scale yielding around a mode I crack is analysed using polycrystalline discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modelled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, nucleation, interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Grain boundaries are modelled as impenetrable to dislocations. The polycrystalline material is taken to consist of two types of square grains, one of which has a bcc-like orientation and the other an fcc-like orientation. For both orientations there are three active slip systems. Alternating rows, alternating columns and a checker-board-like arrangement of the grains is used to construct the polycrystalline materials. Consistent with the increasing yield strength of the polycrystalline material with decreasing grain size, the calculations predict a decrease in both the plastic zone size and the crack-tip opening displacement for a given applied mode I stress intensity factor. Furthermore, slip-band and kink-band formation is inhibited by all grain arrangements and, with decreasing grain size, the stress and strain distributions more closely resemble the HRR fields with the crack-tip opening approximately inversely proportional to the yield strength of the polycrystalline materials. The calculations predict a reduction in fracture toughness with decreasing grain size associated with the grain boundaries acting as effective barriers to dislocation motion.
Resumo:
To investigate the flow control potential of micro-vortex generators for supersonic mixed-compression inlets, a basic model experiment has been designed which combines a normal shock wave with a subsonic diffuser. The diffuser is formed by a simple expansion corner, with a divergence angle of 6 degrees. The diffuser entry Mach numbers were M=1.3 and M=1.5 and a number of shock locations relative to the corner position were tested. Flow control was applied in the form of counter-rotating micro-vanes with heights of approximately 20% of boundary layer thickness. Furthermore, corner fences where employed to reduce sidewall effects. It was found that micro-vortex generators were able to significantly reduce the extent of flow separation under all conditions, but could not eliminate it altogether. Corner fences also demonstrated potential for improving the flow in rectangular cross section channels and the combination of corner fences with micro-vortex generators was found to give the greatest benefits. At M=1.3 the combination of corner fences and micro-vanes placed close to the diffuser entry could prevent separation for a wide range of conditions. At the higher diffuser entry Mach number the benefits of flow control were less significant although a reduction of separation size and an improved pressure recovery was observed. It is thought that micro-vortex generators can have significant flow control potential if they are placed close to the expected separation onset and when the adverse pressure gradient is not too far above the incipient separation level. The significant beneficial effects of corner fences warrant a more comprehensive further investigation. It is thought that the control methods suggested here are capable of reducing the bleed requirement on an inlet, which could provide significant performance advantages.
Resumo:
Hydrodynamic properties of the surface vortex have been investigated. Based on the Navier-Stokes equations, three sets of the new formulations for the tangential velocity distributions are derived, and verified against the experimental measurements in the literature. It is shown that one modification greatly improves the agreement with the experimental data. Physical model experiments were carried out to study the intake vortex related to the Xiluodu hydropower project. The velocity fields were measured using the Particle Tracking Velocimetry (PTV) technique. The proposed equation for tangential velocity distribution is applied to the Xiluodu project with the solid boundary being considered by the method of images. Good agreement has been observed between the formula prediction and the experimental observation. © 2010 Publishing House for Journal of Hydrodynamics.
Resumo:
The scattering of sound from a point source by a Rankine vortex is investigated numerically by solving the Euler equations with the novel high-resolution CABARET method. For several Mach numbers of the vortex, the time-average amplitudes of the scattered field obtained from the numerical modeling are compared with the theoretical scaling laws' predictions. Copyright © 2009 by Sergey Karabasov.