917 resultados para Visual Knowledge Engineering


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a framework to integrate requirements management and design knowledge reuse. The research approach begins with a literature review in design reuse and requirements management to identify appropriate methods within each domain. A framework is proposed based on the identified requirements. The framework is then demonstrated using a case study example: vacuum pump design. Requirements are presented as a component of the integrated design knowledge framework. The proposed framework enables the application of requirements management as a dynamic process, including capture, analysis and recording of requirements. It takes account of the evolving requirements and the dynamic nature of the interaction between requirements and product structure through the various stages of product development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we describe how an evidential-reasoner can be used as a component of risk assessment of engineering projects using a direct way of reasoning. Guan & Bell (1991) introduced this method by using the mass functions to express rule strengths. Mass functions are also used to express data strengths. The data and rule strengths are combined to get a mass distribution for each rule; i.e., the first half of our reasoning process. Then we combine the prior mass and the evidence from the different rules; i.e., the second half of the reasoning process. Finally, belief intervals are calculated to help in identifying the risks. We apply our evidential-reasoner on an engineering project and the results demonstrate the feasibility and applicability of this system in this environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we introduce a novel high-level visual content descriptor which is devised for performing semantic-based image classification and retrieval. The work can be treated as an attempt to bridge the so called “semantic gap”. The proposed image feature vector model is fundamentally underpinned by the image labelling framework, called Collaterally Confirmed Labelling (CCL), which incorporates the collateral knowledge extracted from the collateral texts of the images with the state-of-the-art low-level image processing and visual feature extraction techniques for automatically assigning linguistic keywords to image regions. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicates that our proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seventeen-month-old infants were presented with pairs of images, in silence or with the non-directive auditory stimulus 'look!'. The images had been chosen so that one image depicted an item whose name was known to the infant, and the other image depicted an image whose name was not known to the infant. Infants looked longer at images for which they had names than at images for which they did not have names, despite the absence of any referential input. The experiment controlled for the familiarity of the objects depicted: in each trial, image pairs presented to infants had previously been judged by caregivers to be of roughly equal familiarity. From a theoretical perspective, the results indicate that objects with names are of intrinsic interest to the infant. The possible causal direction for this linkage is discussed and it is concluded that the results are consistent with Whorfian linguistic determinism, although other construals are possible. From a methodological perspective, the results have implications for the use of preferential looking as an index of early word comprehension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use a detailed study of the knowledge work around visual representations to draw attention to the multidimensional nature of `objects'. Objects are variously described in the literatures as relatively stable or in flux; as abstract or concrete; and as used within or across practices. We clarify these dimensions, drawing on and extending the literature on boundary objects, and connecting it with work on epistemic and technical objects. In particular, we highlight the epistemic role of objects, using our observations of knowledge work on an architectural design project to show how, in this setting, visual representations are characterized by a `lack' or incompleteness that precipitates unfolding. The conceptual design of a building involves a wide range of technical, social and aesthetic forms of knowledge that need to be developed and aligned. We explore how visual representations are used, and how these are meaningful to different stakeholders, eliciting their distinct contributions. As the project evolves and the drawings change, new issues and needs for knowledge work arise. These objects have an `unfolding ontology' and are constantly in flux, rather than fully formed. We discuss the implications for wider understandings of objects in organizations and for how knowledge work is achieved in practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of multimedia content data for very large multimedia content corpora. Current indexing and retrieval applications still use keywords to index multimedia content and those keywords usually do not provide any knowledge about the semantic content of the data. With the increasing amount of multimedia content, it is inefficient to continue with this approach. In this paper, we describe the project DREAM, which addresses such challenges by proposing a new framework for semi-automatic annotation and retrieval of multimedia based on the semantic content. The framework uses the Topic Map Technology, as a tool to model the knowledge automatically extracted from the multimedia content using an Automatic Labelling Engine. We describe how we acquire knowledge from the content and represent this knowledge using the support of NLP to automatically generate Topic Maps. The framework is described in the context of film post-production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The domain of Knowledge Discovery (KD) and Data Mining (DM) is of growing importance in a time where more and more data is produced and knowledge is one of the most precious assets. Having explored both the existing underlying theory, the results of the ongoing research in academia and the industry practices in the domain of KD and DM, we have found that this is a domain that still lacks some systematization. We also found that this systematization exists to a greater degree in the Software Engineering and Requirements Engineering domains, probably due to being more mature areas. We believe that it is possible to improve and facilitate the participation of enterprise stakeholders in the requirements engineering for KD projects by systematizing requirements engineering process for such projects. This will, in turn, result in more projects that end successfully, that is, with satisfied stakeholders, including in terms of time and budget constraints. With this in mind and based on all information found in the state-of-the art, we propose SysPRE - Systematized Process for Requirements Engineering in KD projects. We begin by proposing an encompassing generic description of the KD process, where the main focus is on the Requirements Engineering activities. This description is then used as a base for the application of the Design and Engineering Methodology for Organizations (DEMO) so that we can specify a formal ontology for this process. The resulting SysPRE ontology can serve as a base that can be used not only to make enterprises become aware of their own KD process and requirements engineering process in the KD projects, but also to improve such processes in reality, namely in terms of success rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.