973 resultados para Vertical wind shear.
Resumo:
An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.
Resumo:
In order to evaluate ground shaking characteristics due to surface soil layers in the urban area of Port-au-Prince, short-period ambient noise observation has been performed approximately in a 500x500m grid. The HVSR method was applied to this set of 36 ambient noise measurement points to determine a distribution map of soil predominant periods. This map reveals a general increasing trend in the period values, from the Miocene conglomerates in the northern and southern parts of the town to the central and western zones formed of Pleistocene and Holocene alluvial deposits respectively, where the shallow geological materials that cover the basement increase in thickness. Shorter predominant periods (less than 0.3 s) were found in mountainous and neighbouring zones, where the thickness of sediments is smaller whereas longer periods (greater than 0.5 s) appear in Holocene alluvial fans, where the thickness of sediments is larger. The shallow shear-wave velocity structure have been estimated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. The measurements were carried out at one open space located in Holocene alluvial deposits, using 3 regular pentagonal arrays with 5, 10 and 20m respectively. Reliable dispersion curves were retrieved for frequencies between 4.0 and 14 Hz, with phase velocity values ranging from 420m/s down to 270 m/s. Finally, the average shear-wave velocity of the upper 30 m (VS30) was inverted for characterization of this geological unit.
Resumo:
High suction loads appear on roofs of low-height buildings. The use of parapets with appropriate height at the roof edges alleviates these loads. The performance of six parapet configurations to decrease the suction loads induced on roofs by oblique winds has been studied in a low speed wind tunnel. The studied parapet configurations include vertical wall parapets, either solid or porous, and cantilevered parapets formed by a small horizontal roof close to the building roof. Low-height parapets with a medium porosity and cantilevered parapets are more efficient than solid parapets to reduce the wind suctions generated on the roofs by conical vortices.
Resumo:
Different methods to reduce the high suction caused by conical vortices have been reported in the literature: vertical parapets, either solids or porous, placed at the roof edges being the most analysed configuration. Another method for alleviating the high suction peaks due to conical vortices is to round the roof edges. Very recently, the use of some non-standard parapet configurations, like cantilever parapets, has been suggested. In this paper, its efficiency to reduce suction loads on curved roofs is experimentally checked by testing the pressure distribution on the curved roof of a low-rise building model in a wind tunnel. Very high suction loads have been measured on this model, the magnitude of these high suction loads being significantly decreased when cantilever...
Resumo:
The Bolund experiment has been reproduced in a neutral boundary layer wind tunnel (WT) at scale 1:115 for two Reynolds numbers. All the results have been obtained for an incoming flow from the 270o wind direction (transect B in the Bolund experiment jargon). Vertical scans of the velocity field are obtained using non-time resolved two components particle image velocimetry. Time-resolved velocity time series with a three component hot-wire probe have been also measured for transects at 2 and 5 m height and in the vertical transects at met masts M6, M3 and M8 locations. Special attention has been devoted to the detailed characterization of the inflow in order to reduce uncertainties in future comparisons with other physical and numerical simulations. Emphasis is placed on the analysis of spectral functions of the undisturbed flow and those of the flow above the island. The result?s reproducibility and trustworthiness have been addressed through redundancy measurements using particle image velocimetry, two and three components hot-wire anemometry. The bias in the prediction of the mean speed is similar to the one reported during the Bolund experiment by the physical modellers. However, certain reduction of the bias in the estimation of the turbulent kinetic energy is achieved. TheWT results of spectra and cosprectra have revealed a behaviour similar to the full-scale measurements in some relevant locations, showing that WT modelling can contribute to provide valid information about these important structural loading factors.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require threedimensional coupled vehicle-bridge models, wheree consideration of wheel to rail contact is a key aspect. Furthermore, an adequate evaluation of safety of rail traffic requires nonlinear models. A nonlinear coupled model is proposed here for vehicle-structure vertical and lateral dynamics. Vehicles are considered as fully three-dimensional multibody systems including gyroscopic terms and large rotation effects. The bridge structure is modeled by means of finite elements which may be of beam, shell or continuum type and may include geometric or material nonlinearities. The track geometry includes distributed track alignment irregularities. Both subsystems (bridge and vehicles) are described with coordinates in absolute reference frames, as opposed to alternative approaches which describe the multibody system with coordinates relative to the base bridge motion. The wheelrail contact employed is a semi-Hertzian model based on realistic wheel-rail profiles. It allows a detailed geometrical description of the contact patch under each wheel including multiple-point contact, flange contact and uplift. Normal and tangential stresses in each contact are integrated at each time-step to obtain the resultant contact forces. The models have been implemented within an existing finite element analysis software with multibody capabilities, Abaqus (Simulia Ltd., 2010). Further details of the model are presented in Antolín et al. (2012). Representative applications are presented for railway vehicles under lateral wind action on laterally compliant viaducts, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
A series of numerical simulations of the flow over a forest stand have been conducted using two different turbulence closure models along with various levels of canopy morphology data. Simulations have been validated against Stereoscopic Particle Image Velocimetry measurements from a wind tunnel study using one hundred architectural model trees, the porosities of which have been assessed using a photographic technique. It has been found that an accurate assessment of the porosity of the canopy, and specifically the variability with height, improves simulation quality regardless of the turbulence closure model used or the level of canopy geometry included. The observed flow field and recovery of the wake is in line with characteristic canopy flows published in the literature and it was found that the shear stress transport turbulence model was best able to capture this detail numerically.
Resumo:
A numerical simulation of the aerodynamic behavior of high-speed trains under synthetic crosswinds at a 90º yaw angle is presented. The train geometry is the aerodynamic train model (ATM). Flow description based on numerical simulations is obtained using large eddy simulation (LES) and the commercial code ANSYSFluent V14.5. A crosswind whose averaged velocity and turbulence characteristics change with distance to the ground is imposed. Turbulent fluctuations that vary temporally and spatially are simulated with TurbSim code. The crosswind boundary condition is calculated for the distance the train runs during a simulation period. The inlet streamwise velocity boundary condition is generated using Taylor?s frozen turbulence hypothesis. The model gives a time history of the force and moments acting on the train; this includes averaged values, standard deviations and extreme values. Of particular interest are the spectra of the forces and moments, and the admittance spectra. For comparison, results obtained with LES and a uniform wind velocity fluctuating in time, and results obtained with Reynolds averaged Navier Stokes equations (RANS), and the averaged wind conditions, are also presented.
Resumo:
El artículo que se presenta a continuación recoge la ampliación de una investigación previa sobre los rebases en los espaldones de los diques verticales y en talud. Para ello se han realizado una serie de ensayos en modelo físico a escala reducida sobre la sección vertical del Dique de Levante de Málaga, cuyo objeto principal fue analizar el efecto del viento en el rebase. Los ensayos se han realizado generando oleaje con y sin viento, comparando los resultados obtenidos en cada una de las dos situaciones y se han llevado a cabo en el Canal de Oleaje y Viento de Gran Escala existente en el Laboratorio de Experimentación Marítima del Centro de Estudios de Puertos y Costas del CEDEX. The purpose of the research work as summarised in this article, resulting from diverse work carried out at the CEDEX, is to make an analysis of the influence of wind effects on the wave overtopping of vertical sea-walls. The results obtained in the Málaga´s Levante breakwater tests are presented here. The test was carried out in large sized facilities where waves and wind are generated.
Resumo:
La Energía eléctrica producida mediante tecnología eólica flotante es uno de los recursos más prometedores para reducir la dependencia de energía proveniente de combustibles fósiles. Esta tecnología es de especial interés en países como España, donde la plataforma continental es estrecha y existen pocas áreas para el desarrollo de estructuras fijas. Entre los diferentes conceptos flotantes, esta tesis se ha ocupado de la tipología semisumergible. Estas plataformas pueden experimentar movimientos resonantes en largada y arfada. En largada, dado que el periodo de resonancia es largo estos puede ser inducidos por efectos de segundo orden de deriva lenta que pueden tener una influencia muy significativa en las cargas en los fondeos. En arfada las fuerzas de primer orden pueden inducir grandes movimientos y por tanto la correcta determinación del amortiguamiento es esencial para la analizar la operatividad de la plataforma. Esta tesis ha investigado estos dos efectos, para ello se ha usado como caso base el diseño de una plataforma desarrollada en el proyecto Europeo Hiprwind. La plataforma se compone de 3 columnas cilíndricas unidas mediante montantes estructurales horizontales y diagonales, Los cilindros proporcionan flotabilidad y momentos adrizante. A la base de cada columna se le ha añadido un gran “Heave Plate” o placa de cierre. El diseño es similar a otros diseños previos (Windfloat). Se ha fabricado un modelo a escala de una de las columnas para el estudio detallado del amortiguamiento mediante oscilaciones forzadas. Las dimensiones del modelo (1m diámetro en la placa de cierre) lo hacen, de los conocidos por el candidato, el mayor para el que se han publicado datos. El diseño del cilindro se ha realizado de tal manera que permite la fijación de placas de cierre planas o con refuerzo, ambos modelos se han fabricado y analizado. El modelo con refuerzos es una reproducción exacta del diseño a escala real incluyendo detalles distintivos del mismo, siendo el más importante la placa vertical perimetral. Los ensayos de oscilaciones forzadas se han realizado para un rango de frecuencias, tanto para el disco plano como el reforzado. Se han medido las fuerzas durante los ensayos y se han calculado los coeficientes de amortiguamiento y de masa añadida. Estos coeficientes son necesarios para el cálculo del fondeo mediante simulaciones en el dominio del tiempo. Los coeficientes calculados se han comparado con la literatura existente, con cálculos potenciales y por ultimo con cálculos CFD. Para disponer de información relevante para el diseño estructural de la plataforma se han medido y analizado experimentalmente las presiones en la parte superior e inferior de cada placa de cierre. Para la correcta estimación numérica de las fuerzas de deriva lenta en la plataforma se ha realizado una campaña experimental que incluye ensayos con modelo cautivo de la plataforma completa en olas bicromaticas. Pese a que estos experimentos no reproducen un escenario de oleaje realista, los mismos permiten una verificación del modelo numérico mediante la comparación de fuerzas medidas en el modelo físico y el numérico. Como resultados de esta tesis podemos enumerar las siguientes conclusiones. 1. El amortiguamiento y la masa añadida muestran una pequeña dependencia con la frecuencia pero una gran dependencia con la amplitud del movimiento. siendo coherente con investigaciones existentes. 2. Las medidas con la placa de cierre reforzada con cierre vertical en el borde, muestra un amortiguamiento significativamente menor comparada con la placa plana. Esto implica que para ensayos de canal es necesario incluir estos detalles en el modelo. 3. La masa añadida no muestra grandes variaciones comparando placa plana y placa con refuerzos. 4. Un coeficiente de amortiguamiento del 6% del crítico se puede considerar conservador para el cálculo en el dominio de la frecuencia. Este amortiguamiento es equivalente a un coeficiente de “drag” de 4 en elementos de Morison cuadráticos en las placas de cierre usadas en simulaciones en el dominio del tiempo. 5. Se han encontrado discrepancias en algunos valores de masa añadida y amortiguamiento de la placa plana al comparar con datos publicados. Se han propuesto algunas explicaciones basadas en las diferencias en la relación de espesores, en la distancia a la superficie libre y también relacionadas con efectos de escala. 6. La presión en la placa con refuerzos son similares a las de la placa plana, excepto en la zona del borde donde la placa con refuerzo vertical induce una gran diferencias de presiones entre la cara superior e inferior. 7. La máxima diferencia de presión escala coherentemente con la fuerza equivalente a la aceleración de la masa añadida distribuida sobre la placa. 8. Las masas añadidas calculadas con el código potencial (WADAM) no son suficientemente precisas, Este software no contempla el modelado de placas de pequeño espesor con dipolos, la poca precisión de los resultados aumenta la importancia de este tipo de elementos al realizar simulaciones con códigos potenciales para este tipo de plataformas que incluyen elementos de poco espesor. 9. Respecto al código CFD (Ansys CFX) la precisión de los cálculos es razonable para la placa plana, esta precisión disminuye para la placa con refuerzo vertical en el borde, como era de esperar dado la mayor complejidad del flujo. 10. Respecto al segundo orden, los resultados, en general, muestran que, aunque la tendencia en las fuerzas de segundo orden se captura bien con los códigos numéricos, se observan algunas reducciones en comparación con los datos experimentales. Las diferencias entre simulaciones y datos experimentales son mayores al usar la aproximación de Newman, que usa únicamente resultados de primer orden para el cálculo de las fuerzas de deriva media. 11. Es importante remarcar que las tendencias observadas en los resultados con modelo fijo cambiarn cuando el modelo este libre, el impacto que los errores en las estimaciones de fuerzas segundo orden tienen en el sistema de fondeo dependen de las condiciones ambientales que imponen las cargas ultimas en dichas líneas. En cualquier caso los resultados que se han obtenido en esta investigación confirman que es necesaria y deseable una detallada investigación de los métodos usados en la estimación de las fuerzas no lineales en las turbinas flotantes para que pueda servir de guía en futuros diseños de estos sistemas. Finalmente, el candidato espera que esta investigación pueda beneficiar a la industria eólica offshore en mejorar el diseño hidrodinámico del concepto semisumergible. ABSTRACT Electrical power obtained from floating offshore wind turbines is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. The concept is the most competitive in countries, such as Spain, where the continental shelf is narrow and does not provide space for fixed structures. Among the different floating structures concepts, this thesis has dealt with the semisubmersible one. Platforms of this kind may experience resonant motions both in surge and heave directions. In surge, since the platform natural period is long, such resonance can be excited with second order slow drift forces and may have substantial influence on mooring loads. In heave, first order forces can induce significant motion, whose damping is a crucial factor for the platform downtime. These two topics have been investigated in this thesis. To this aim, a design developed during HiPRWind EU project, has been selected as reference case study. The platform is composed of three cylindrical legs, linked together by a set of structural braces. The cylinders provide buoyancy and restoring forces and moments. Large circular heave plates have been attached to their bases. The design is similar to other documented in literature (e.g. Windfloat), which implies outcomes could have a general value. A large scale model of one of the legs has been built in order to study heave damping through forced oscillations. The final dimensions of the specimen (one meter diameter discs) make it, to the candidate’s knowledge, the largest for which data has been published. The model design allows for the fitting of either a plain solid heave plate or a flapped reinforced one; both have been built. The latter is a model scale reproduction of the prototype heave plate and includes some distinctive features, the most important being the inclusion of a vertical flap on its perimeter. The forced oscillation tests have been conducted for a range of frequencies and amplitudes, with both the solid plain model and the vertical flap one. Forces have been measured, from which added mass and damping coefficients have been obtained. These are necessary to accurately compute time-domain simulations of mooring design. The coefficients have been compared with literature, and potential flow and CFD predictions. In order to provide information for the structural design of the platform, pressure measurements on the top and bottom side of the heave discs have been recorded and pressure differences analyzed. In addition, in order to conduct a detailed investigation on the numerical estimations of the slow-drift forces of the HiPRWind platform, an experimental campaign involving captive (fixed) model tests of a model of the whole platform in bichromatic waves has been carried out. Although not reproducing the more realistic scenario, these tests allowed a preliminary verification of the numerical model based directly on the forces measured on the structure. The following outcomes can be enumerated: 1. Damping and added mass coefficients show, on one hand, a small dependence with frequency and, on the other hand, a large dependence with the motion amplitude, which is coherent with previously published research. 2. Measurements with the prototype plate, equipped with the vertical flap, show that damping drops significantly when comparing this to the plain one. This implies that, for tank tests of the whole floater and turbine, the prototype plate, equipped with the flap, should be incorporated to the model. 3. Added mass values do not suffer large alterations when comparing the plain plate and the one equipped with a vertical flap. 4. A conservative damping coefficient equal to 6% of the critical damping can be considered adequate for the prototype heave plate for frequency domain analysis. A corresponding drag coefficient equal to 4.0 can be used in time domain simulations to define Morison elements. 5. When comparing to published data, some discrepancies in added mass and damping coefficients for the solid plain plate have been found. Explanations have been suggested, focusing mainly on differences in thickness ratio and distance to the free surface, and eventual scale effects. 6. Pressures on the plate equipped with the vertical flap are similar in magnitude to those of the plain plate, even though substantial differences are present close to the edge, where the flap induces a larger pressure difference in the reinforced case. 7. The maximum pressure difference scales coherently with the force equivalent to the acceleration of the added mass, distributed over the disc surface. 8. Added mass coefficient values predicted with the potential solver (WADAM) are not accurate enough. The used solver does not contemplate modeling thin plates with doublets. The relatively low accuracy of the results highlights the importance of these elements when performing potential flow simulations of offshore platforms which include thin plates. 9. For the full CFD solver (Ansys CFX), the accuracy of the computations is found reasonable for the plain plate. Such accuracy diminishes for the disc equipped with a vertical flap, an expected result considering the greater complexity of the flow. 10. In regards to second order effects, in general, the results showed that, although the main trend in the behavior of the second-order forces is well captured by the numerical predictions, some under prediction of the experimental values is visible. The gap between experimental and numerical results is more pronounced when Newman’s approximation is considered, making use exclusively of the mean drift forces calculated in the first-order solution. 11. It should be observed that the trends observed in the fixed model test may change when the body is free to float, and the impact that eventual errors in the estimation of the second-order forces may have on the mooring system depends on the characteristics of the sea conditions that will ultimately impose the maximum loads on the mooring lines. Nevertheless, the preliminary results obtained in this research do confirm that a more detailed investigation of the methods adopted for the estimation of the nonlinear wave forces on the FOWT would be welcome and may provide some further guidance for the design of such systems. As a final remark, the candidate hopes this research can benefit the offshore wind industry in improving the hydrodynamic design of the semi-submersible concept.
Resumo:
La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.
Resumo:
Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.