953 resultados para Versatile Nonlinear Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a nonlinear cyclin content structured model of a cell population divided into proliferative and quiescent cells. We show, for particular values of the parameters, existence of solutions that do not depend on the cyclin content. We make numerical simulations for the general case obtaining, for some values of the parameters convergence to the steady state but also oscillations of the population for others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roughly fifteen years ago, the Church of Jesus Christ of Latter-day Saints published a new proposed standard file format. They call it GEDCOM. It was designed to allow different genealogy programs to exchange data.Five years later, in may 2000, appeared the GENTECH Data Modeling Project, with the support of the Federation of Genealogical Societies (FGS) and other American genealogical societies. They attempted to define a genealogical logic data model to facilitate data exchange between different genealogical programs. Although genealogists deal with an enormous variety of data sources, one of the central concepts of this data model was that all genealogical data could be broken down into a series of short, formal genealogical statements. It was something more versatile than only export/import data records on a predefined fields. This project was finally absorbed in 2004 by the National Genealogical Society (NGS).Despite being a genealogical reference in many applications, these models have serious drawbacks to adapt to different cultural and social environments. At the present time we have no formal proposal for a recognized standard to represent the family domain.Here we propose an alternative conceptual model, largely inherited from aforementioned models. The design is intended to overcome their limitations. However, its major innovation lies in applying the ontological paradigm when modeling statements and entities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to macroscopic susceptibilities directly comparable with experimental results. By seperating the discrete local field into two distinct contribution we define two different microscopic properties, the so-called solute and effective properties. The solute properties account for the pure solvent effects, i.e., effects even when the macroscopic electric field is zero, and the effective properties account for both the pure solvent effects and the effect from the induced dipoles in the solvent due to the macroscopic electric field. We present results for the linear and nonlinear polarizabilities of water and acetonitrile both in the gas phase and in the liquid phase. For all the properties we find that the pure solvent effect increases the properties whereas the induced electric field decreases the properties. Furthermore, we present results for the refractive index, third-harmonic generation (THG), and electric field induced second-harmonic generation (EFISH) for liquid water and acetonitrile. We find in general good agreement between the calculated and experimental results for the refractive index and the THG susceptibility. For the EFISH susceptibility, however, the difference between experiment and theory is larger since the orientational effect arising from the static electric field is not accurately described

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently measured inclusive electron-proton cross section in the nucleon resonance region, performed with the CLAS detector at the Thomas Jefferson Laboratory, has provided new data for the nucleon structure function F2 with previously unavailable precision. In this paper we propose a description of these experimental data based on a Regge-dual model for F2. The basic inputs in the model are nonlinear complex Regge trajectories producing both isobar resonances and a smooth background. The model is tested against the experimental data, and the Q2 dependence of the moments is calculated. The fitted model for the structure function (inclusive cross section) is a limiting case of the more general scattering amplitude equally applicable to deeply virtual Compton scattering. The connection between the two is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the relationship between nonlinear-relaxation-time (NLRT) and quasideterministic approaches to characterize the decay of an unstable state. The universal character of the NLRT is established. The theoretical results are applied to study the dynamical relaxation of the Landau model in one and n variables and also a laser model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser systems can be used to detect very weak optical signals. The physical mechanism is the dynamical process of the relaxation of a laser from an unstable state to a steady stable state. We present an analysis of this process based on the study of the nonlinear relaxation time. Our analytical results are compared with numerical integration of the stochastic differential equations that model this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.