905 resultados para Vehicle counting and classification
Resumo:
Latency can be defined as the sum of the arrival times at the customers. Minimum latency problems are specially relevant in applications related to humanitarian logistics. This thesis presents algorithms for solving a family of vehicle routing problems with minimum latency. First the latency location routing problem (LLRP) is considered. It consists of determining the subset of depots to be opened, and the routes that a set of homogeneous capacitated vehicles must perform in order to visit a set of customers such that the sum of the demands of the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solving this problem three metaheuristic algorithms combining simulated annealing and variable neighborhood descent, and an iterated local search (ILS) algorithm, are proposed. Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints are relaxed. Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming model and a variable neighborhood search algorithm are proposed for solving the problem. Furthermore a sampling method is developed for tackling instances with an infinite number of scenarios. Extensive computational experiments show that the proposed methods are effective for solving the problems under study.
Resumo:
Mice infected with Schistosoma mansoni were treated with oxamniquine, praziquantel, artesunate at the pre-patent phase, aiming at observing schistogram alterations. Half of the animals were perfused five days post-treatment for counting and classification of immature worms, based on pre-established morphological criteria (schistogram); the remaining animals were evaluated 42 or 100 days after infection and perfusion of the portal-system was performed for collection and counting of adult worms and oogram. It was observed that oxamniquine and artesunate treatment administered at the pre-postural phase causes significant reduction in the number of immature and adult worms. However, there was little reduction with praziquantel when used at the dose of 400 mg/kg for treatments administered 14, 15, 21 or 23 days post-infection. Artesunate was responsible for significant alterations in development of young worms, as well as for a higher number of worms presenting intestinal damages. Immature adult worms were detected in mice treated with artesunate or oxamniquine at the pre-patent phase of infection and recovered by perfusion 100 days after infection. Schistogram proved to be a very useful tool for experimental evaluation of the activity of antischistosomal drugs and a good model to identify the most sensitive stages to drugs.
Resumo:
Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.
Resumo:
Several are the areas in which digital images are used in solving day-to-day problems. In medicine the use of computer systems have improved the diagnosis and medical interpretations. In dentistry it’s not different, increasingly procedures assisted by computers have support dentists in their tasks. Set in this context, an area of dentistry known as public oral health is responsible for diagnosis and oral health treatment of a population. To this end, oral visual inspections are held in order to obtain oral health status information of a given population. From this collection of information, also known as epidemiological survey, the dentist can plan and evaluate taken actions for the different problems identified. This procedure has limiting factors, such as a limited number of qualified professionals to perform these tasks, different diagnoses interpretations among other factors. Given this context came the ideia of using intelligent systems techniques in supporting carrying out these tasks. Thus, it was proposed in this paper the development of an intelligent system able to segment, count and classify teeth from occlusal intraoral digital photographic images. The proposed system makes combined use of machine learning techniques and digital image processing. We first carried out a color-based segmentation on regions of interest, teeth and non teeth, in the images through the use of Support Vector Machine. After identifying these regions were used techniques based on morphological operators such as erosion and transformed watershed for counting and detecting the boundaries of the teeth, respectively. With the border detection of teeth was possible to calculate the Fourier descriptors for their shape and the position descriptors. Then the teeth were classified according to their types through the use of the SVM from the method one-against-all used in multiclass problem. The multiclass classification problem has been approached in two different ways. In the first approach we have considered three class types: molar, premolar and non teeth, while the second approach were considered five class types: molar, premolar, canine, incisor and non teeth. The system presented a satisfactory performance in the segmenting, counting and classification of teeth present in the images.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Operation modes for the electric vehicle in smart grids and smart homes : present and proposed modes
Resumo:
This paper presents the main operation modes for an electric vehicle (EV) battery charger framed in smart grids and smart homes, i.e., are discussed the present-day and are proposed new operation modes that can represent an asset towards EV adoption. Besides the well-known grid to vehicle (G2V) and vehicle to grid (V2G), this paper proposes two new operation modes: Home-to-vehicle (H2V), where the EV battery charger current is controlled according to the current consumption of the electrical appliances of the home (this operation mode is combined with the G2V and V2G); Vehicle-for-grid (V4G), where the EV battery charger is used for compensating current harmonics or reactive power, simultaneously with the G2V and V2G operation modes. The vehicle-to-home (V2H) operation mode, where the EV can operate as a power source in isolated systems or as an off-line uninterruptible power supply to feed priority appliances of the home during power outages of the electrical grid is presented in this paper framed with the other operation modes. These five operation modes were validated through experimental results using a developed 3.6 kW bidirectional EV battery charger prototype, which was specially designed for these operation modes. The paper describes the developed EV battery charger prototype, detailing the power theory and the voltage and current control strategies used in the control system. The paper presents experimental results for the various operation modes, both in steady-state and during transients.
Resumo:
This paper addresses the issue of double counting of health impacts in the context of cost of illness valuation. Double counting occurs when estimates are jointly used, which rely on valuation techniques that overlap. As a solution, we propose to limit the scope of each of the valuation method to a specific range of impacts. In order to limit the contingentvaluation method to the exclusive valuation of intangible costs, we propose a three steps approach : (1) leave the respondents free to valuate the consequences which matter to them, (2) elicit respondent's motivations, (3) control for the influence motivations have on elicited values. This procedure was applied in a Swiss contingent-valuation. An econometric treatment was applied in order to limit the scope of the estimates of the contingent valuation method to intangibles,therefore the possibility to a combination of methods with the risk of double-counting and underestimating costs being kept to a minimum.
Resumo:
Goals: Adjuvant chemotherapy decisions in breast cancer are increasing based on the pathologist's assessment of the proliferation fraction in the tumor. Yet, how good and how reproducible are we pathologists at providing reliable Ki-67 readings on breast carcinomas. Exactly how to count and in which areas to count within a tumor remains inadequately standardized. The Swiss Working Group of Gyneco- and Breast Pathologists has tried to appreciate this dilemma and to propose ways to obtain more reproducible results.Methods: In a first phase, 5 pathologists evaluated Ki67 counts in 10 breast cancers by exact counting (500 cells) and by eyeballing. Pathologists were free to select the region in which Ki67 was evaluated. In a second phase 16 pathologists evaluated Ki-67 counts in 3 breast cancers also by exact counting and eyeballing, but in predefined fields of interest. In both phases, Ki67 was assessed in centrally immunostained slides (ZH) and on slides immunostained in the 11 participating laboratories. In a third phase, these same 16 pathologists were once again asked to read the 3 cases from phase 2, plus three new cases, and this time exact guidelines were provided as to what exactly is considered a Ki-67 positive nucleus.Results: Discordance of Ki67 assessment was due to each of the following 4 factors: (i) pathologists' divergent definitions of what counts as a positive nucleus (ii) the mode of assessment (counting vs. eyeballing), (iii) immunostaining technique/protocol/antibody, and (iv) the selection of the area in which to count.Conclusion: Providing guidelines as to where to count (representative field in the tumor periphery and omitting hot spots) and what nuclei to count (even faintly immunostained nuclei count as positive) reduces the discordance rates of Ki67 readings between pathologists. Laboratory technique is only of minor importance (even over a large antibody dilution range), and counting nuclei does not improve accuracy, but rather aggravates deviations from the group mean values.Disclosure of Interest: None Declared
Resumo:
This document Classifications and Pay Plans is produced by the State of Iowa Executive Branch, Department of Administrative Services. Informational document about the pay plan codes and classification codes, how to use them.
Resumo:
This issue review provides information about the Iowa State Patrol's general fund budget; specifically, vehicle depreciation and fuel expenses.
Resumo:
This document Classifications and Pay Plans is produced by the State of Iowa Executive Branch, Department of Administrative Services. Informational document about the pay plan codes and classification codes, how to use them.
Resumo:
We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.
Resumo:
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.
Resumo:
This report provides recommendations for the state of Iowa over the next five years in regards to automated vehicle policy development. These administrative, planning, legal, and community strategy recommendations for government agencies include: • Encouraging automation by preparing government agencies, infrastructure, leveraging procurement, and advocating for safety mandates • Adjusting long range planning processes by identifying and incorporating a wide range of new automation scenarios • Beginning to analyze and, as necessary, clarify existing law as it apples to automated driving • Auditing existing law • Enforcing existing laws • Ensuring vehicle owners and operators bear the true cost of driving • Embracing flexibility by giving agencies the statutory authority to achieve regulatory goals through different means, allowing them to make small-scale exemptions to statutory regimes and clarifying their enforcement discretion • Thinking locally and preparing publicly • Sharing the steps being taken to promote (as well as to anticipate and regulate) automated driving • Instituting public education about automated vehicle technologies.