409 resultados para VASCULATURE
Resumo:
Background New potential hazards in the use of ultrasound (US) are implied in new diagnostic applications of US, such as contrast enhanced US. Aim To assess the level of awareness and knowledge on safety issues of clinical use of US among physicians who are members of the Italian National Society for Ultrasound (SIUMB) Materials and methods A questionnaire including 11 multiple choice quiz was sent by e-mail to members of SIUMB, who preliminarly agreed to participate in this initiative. The answers were received anonimously and statistically analyzed. Results The number of returned valid questionnaires was 97 (8 were considered not valid for less than 10 answers filled). Mean age of the responders was 44 years old, and the average time the physician has been performing ultrasound examinations was 13 years. The principal workplace (70%) was a public Hospital. Physicians seemed to know the general definitions of principal safety-parameters, but few of them knew the definition of specific indexes. There was a general knowledge about the safe use of ultrasound in obstetrics, but there was a poor knowledge of biological effects of US: only about 37% answered correctly to questions about damage of vasculature of lung by high Mechanical Index US investigation and about the increase of temperature under the probe, according to the thermal indexes. Conclusion In conclusion the present findings indicate that greater efforts of National Ultrasound Societies are warranted in disseminating knowledge about the bio-effects of diagnostic ultrasound modalities among their members to prevent possible hazards.
Synthese von Sialyl-Lewis X -Glycopeptiden und -Mimetika als Zelladhäsionsinhibitoren für E-Selektin
Resumo:
Die Selektine initiieren im Verlauf von Entzündungsprozessen einen ersten Zellkontakt zwischen Leukozyten und Endothelzellen und ermöglichen so die Auswanderung der Leukozyten aus den Blutgefäßen in das umliegende Gewebe, wo sie ihre immunologische Wirkung entfalten können. Viele Krankheiten gehen allerdings mit einer übermäßigen, durch Selektine vermittelten Zelladhäsion einher. Daher war es das Ziel dieser Arbeit, Selektininhibitoren zu synthetisieren, die pathologische Zelladhäsionsprozesse, wie man sie z.B. bei rheumatoider Arthritis, bei Erkrankungen der Herzkranzgefäße oder im Verlauf von Tumormetastasierungen findet, unterbinden können. Als Leitstruktur für solche Inhibitoren dient das auf den natürlichen Selektinliganden vorkommende Tetrasaccharid Sialyl-Lewis-X. Sialyl-Lewis-X stellt aber nur einen Teil der natürlichen Selektinliganden dar. Es bindet auch nur im millimolaren Bereich an die Selektine. Die komplexen natürlichen Selektinliganden wie z.B. ESL-1 (E-Selektin-Ligand-1), die an verschiedenen Glycosylierungs-stellen des Glycoproteins Sialyl-Lewis-X präsentieren, binden mit deutlich höherer Affinität an die Selektine. Für eine spezifische Rezeptorbindung sind daher außer dem Tetrasaccharid weitere Partialstrukturen verantwortlich, wobei gezeigt werden konnte, dass ein Anknüpfen von Sialyl-Lewis-X-Derivaten an die Partialsequenz 672-681 des ESL-1 eine Affinitätssteigerung hervorruft. Ein weiterer Nachteil des natürlichen Sialyl-Lewis-X-Tetrasaccharids im Hinblick auf seine pharmakologische Verwendung besteht darin, dass sowohl die fucosidische Bindung als auch die glycosidische Verknüpfung zur Neuraminsäure durch Enzyme leicht gespalten werden, wodurch Sialyl-Lewis-X als potenzielles Anti-Adäsionsmolekül an Wert verliert. Um die Kohlenydratliganden vor einem solchen enzymatischen Abbau zu bewahren, wurden in dieser Arbeit neben der im Sialyl-Lewis-X vorliegenden L-Fucose die im Menschen nicht vorkommenden Kohlenhydrate D-Arabinose und L-Galactose sowie neben der Neuraminsäure die (S)-Cyclohexylmilchsäure zur Herstellung der sechs Glycopeptid-Selektinliganden 1-6 mit der Partialsequenz 672-681 des ESL-1 verknüpft. Die Tetrasaccharide und Tetrasaccharid-Mimetika können aus den geschützten Monosacchariden und der geschützten Cyclohexylmilch-säure in parallelen Synthesen im Gramm-Maßstab hergestellt werden. Die automatisierten Glycopeptid-Festphasensynthesen wurden an einem Peptidsynthesizer nach der Fmoc-Strategie unter Verwendung von mit Asparaginsäure vorbeladenen TentaGel®-Harzen durchgeführt. Die Strukturen aller sechs Glycopeptide 1-6 wurden sowohl durch hoch auflösende massenspektrometrische Analysen als auch durch ein- und zweidimensionale NMR-Experimente belegt. Als Ergebnis dieser Arbeit liegen sechs Sialyl-Lewis-X-Glycopeptide und -Mimetika mit der Partialsequenz 672-681 des ESL-1 vor. Diese werden in Kürze auf ihre Wirksamkeit als Zelladhäsions-inhibitoren für E-Selektin getestet. Daraus sollen sich Erkenntnisse über Struktur-Wirkungs-Beziehungen gewinnen lassen, insbesondere was das kooperative Zusammenwirken von Saccharid- und Peptidteilstrukturen in der Erkennung der Liganden durch das E-Selektin anbetrifft.
Resumo:
Ansatz zur Generierung einer konditionalen, reversiblen Wt1 k.o.-Maus Der Wilms-Tumor (WT, Nephroblastom) ist ein embryonaler Nierentumor, der durch die maligne Transformation von undifferenziertem Nierengewebe, sog. nephrogenen Resten, entsteht. WT treten mit einer Inzidenz von 1 in 10.000 Lebendgeburten auf. Das Hauptmanifestationsalter, der normalerweise einseitig und sporadisch auftretenden Tumore, liegt zwischen dem 3. und 4. Lebensjahr. Etwa 10 % der Patienten entwickeln jedoch bilaterale Tumore. In diesen Fällen ist eine Assoziation mit komplexen genetischen Krankheitsbildern (u. a. WAGR-, Denys-Drash-, Frasier- und Beckwith-Wiedemann-Syndrom) festzustellen. In 15 % der sporadischen WT sind Mutationen im WT1 (Wilms-Tumor 1)-Gen beschrieben. WT1 besteht aus zehn Exons und weist typische Merkmale von Transkriptionsfaktoren (z. B. vier Zinkfinger) auf. Zwei alternative Spleißereignisse betreffen Exon 5 (+/−Exon 5) und Exon 9 (Transkripte mit bzw. ohne die codierenden Sequenzen für die AS Lysin-Threonin-Serin; +/−KTS). Die Lage der drei alternativ vorhandenen AS zwischen den Zinkfingern 3 und 4 bestimmt die verschiedenen Funktionen der WT1-Proteine (4 Isoformen) als Transkriptionsfaktor (−KTS) bzw. als RNA-bindendes Protein (+KTS). Das zunächst im Zusammenhang mit WT als Tumorsuppressorgen identifizierte WT1 ist ein Entwicklungsgen mit einem sehr komplexen Expressionsmuster in der Embryonalentwicklung. Dabei ist v. a. die Bedeutung in der Urogenitalentwicklung entscheidend. Konstitutive, homozygote Wt1−/− k.o.-Mäuse sind embryonal (~ E12,5 dpc) letal und bilden u. a. keine Gonaden und keine Nieren. Aus diesem Grund existiert bisher kein Wilms-Tumormodell. Die Herstellung eines konditionalen murinen Tiermodells auf Basis des Tet on/off-Systems zur Untersuchung der Nierenentwicklung bzw. zur Analyse der Wilms-Tumorpathogenese war Ziel dieser Arbeit. Hierfür wurden drei Mauslinien generiert: Zwei transgene sog. Responder-Linien, die eine chimäre spleißbare Wt1-cDNA der Variante musWt1+Exon 5;+/−KTS unter der Kontrolle eines Tet-responsiven Promotors im Genom tragen. Dieses tTA/Dox-abhängig regulierbare Wt1-Transgen (tgWt1) sollte (exogen regulierbar) die Expression des endogenen Wt1-Lokus ausreichend nachahmen, um die kritischen Phasen der Embryogenese zu überwinden und lebensfähige Tiere zu erhalten. Parallel dazu wurde die Wt1-Effektor-Mauslinie (WE2) generiert. Diese trägt einen tetrazyklinabhängigen Transaktivator (tTA) zur Steuerung Tet-regulierbarer Transgene unter der Kontrolle des endogenen Wt1-Promotors. Die durch homologe Rekombination in ES-Zellen erreichte Integration des tTA direkt am Translationsstartpunkt des Wt1-Lokus hat in den Tieren einen heterozygoten Wt1 knock out/tTA knock in zur Folge. Die bisher vorgenommenen Verpaarungen doppelt transgener Wt1-tTA+/−/Resp-Mäuse ergaben keinen Rescue des letalen Wt1 k.o. und es konnten bislang keine Wilms-Tumore induziert werden. Alle im Verlauf der Arbeit generierten Mauslinien wurden umfassend charakterisiert. So konnte für die Tiere der Responder-Linien Wt1-Resp1 (mit zusätzlichen Isolator-Sequenzen zum Schutz des Transgens vor Positionseffekten) und Wt1-Resp2 (ohne Isolatoren) konnte die Tet-induzierbare Expression und die Spleißbarkeit des tgWt1 in MEF-Assays und mittels Effektor-Mäusen auf RNA-Ebene nachgewiesen werden. Die genomische Charakterisierung der WE2-Linie ergab eine ungeklärte etwa 120 kb große Inversion am Wt1-Lokus, die alle 5'-regulatorischen Sequenzen mitsamt des tTA vom Rest von Wt1 trennt. Tiere dieser Linie weisen aber dennoch einen funktionalen Wt1 k.o. auf: Unter den Nachkommen aus Intercross-Verpaarungen von Wt1-tTA+/−-Mäusen lassen sich auf Grund der Letalität keine Wt1−/−-Genotypen nachweisen. Die Charakterisierung der Effektor-Linie auf RNA-Ebene und mittels Reporter-Mäusen liefert ein Wt1-analoges tTA-Expressionsmuster: So findet man eine deutliche tTA-Expression u. a. in Niere (Glomeruli), Uterus, Ovar und Testis. Die hier vorgestellten Experimente ergeben darüber hinaus eindeutige Hinweise einer Beteiligung von Wt1 in der Entstehung der glatten Muskulatur bzw. in der Vaskulogenese.
Resumo:
Die endotheliale NO-Synthase (eNOS) erfüllt – solange sie funktionell ist – vasoprotektive und anti-atherosklerotische Funktionen im kardiovaskulären System. So stellt die eNOS ein therapeutisches Zielmolekül kardiovaskulärer Erkrankungen dar. Unter pathophysiologischen Bedingungen wurden Hinweise auf eine „eNOS-Entkopplung“, d.h. die NOS-katalysierte Produktion von reaktiven Sauerstoff-Spezies, gefunden. Wir haben in den letzten Jahren Substanzen identifiziert, die die eNOS-Expression steigern, aber auch gleichzeitig die eNOS-Entkopplung revertieren können. Midostaurin z.B. korrigierte einerseits die eNOS-Entkopplung durch Unterdrückung der Expression der vaskulären NADPH-Oxidasen und erhöhte andererseits die eNOS-Expression im Gefäß-Endothel. Kombination dieser beiden Wirkungen führte zur Relaxation der Widerstandsgefäße in atherosklerotischen Mäusen und zur Blutdrucksenkung in spontan-hypertensiven Ratten. So scheint es eine praktikable Strategie für kardiovaskuläre Erkrankungen zu sein, die eNOS-Expression zu steigern und gleichzeitig die eNOS-Entkopplung zu verhindern bzw. eine bereits bestehende eNOS-Entkopplung zu revertieren.
Resumo:
Die AMPK ist ein ubiquitär exprimiertes, heterotrimeres Enzym, das bei Energiemangel das Überleben der Zelle sichert. Um diese Funktion ausüben zu können fungiert die AMPK als sogenannter „Energie-Sensor“, der durch steigende AMP Mengen aktiviert wird. In diesem Zustand werden ATP verbrauchende Reaktionen inhibiert und gleichzeitig ATP generierende Vorgänge induziert. Im vaskulären System konnte gezeigt werden, dass die endotheliale NOSynthase durch die AMPK aktiviert, die Angiogenese stimuliert, die Endothelzellapoptose und das Wachstum von Gefäßmuskelzellen inhibiert wird. All diese Prozesse sind fundamental in der Entwicklung von kardiovaskulären Krankheiten, was auf eine protektive Funktion der AMPK im vaskulären System hindeutet. In der vorliegenden Arbeit sollten die Effekte der in vivo Modulation der AMPK Aktivität auf Endothelfunktion, oxidativen Stress und Inflammation untersucht werden. Dazu wurden zwei unterschiedliche Mausmodelle genutzt: Einerseits wurde die AMPK Aktivität durch den pharmakologischen AMPK-Aktivator AICAR stimuliert und andererseits die vaskulär vorherrschende AMPK-Isoform durch knock out ausgeschaltet. Zur Induktion von oxidativem Stress wurde ein bereits charakterisiertes Angiotensin II-Modell angewandt. Zur Untersuchung gehörten neben den Superoxid-Messungen auch die Bestimmung der Stickstoffmonoxid-Mengen in Serum und Aortengewebe, die Relaxationsmessungen in isometrischen Tonusstudien sowie HPLC-basierte Assays. Es konnte gezeigt werden, dass durch die Aktivierung der AMPK mittels AICAR die Angiotensin II induzierte Endotheldysfunktion, der oxidative Stress und auch die vaskuläre Inflammation verbessert werden konnte. Weiterhin zeigte sich dass der knock out der vaskulären Isoform (α1) im Angiotensin II Modell eine signifikant verstärkte Endotheldysfunktion, oxidativen Stress und Inflammation nach sich zog. Anhand der erhobenen Daten konnte die NADPH-Oxidase als Hauptquelle des Angiotensin II induzierten oxidativen Stresses identifiziert werden, wobei sich diese Quelle als AMPK sensitiv erwies. Durch die Aktivierung konnte die Aktivität der NADPH-Oxidase verringert und durch die α1AMPK Defizienz signifikant erhöht werden. Auch die mitochondriale Superoxidproduktion konnte durch die Modulation der AMPK Aktivität beeinflusst werden. Die vaskuläre Inflammation, die anhand der Surrogaten VCAM-1, COX-2 und iNOS untersucht wurde, konnte durch Aktivierung der AMPK verringert werden, der knock out der α1AMPK führte so einer sehr starken Expressionssteigerung der induzierbaren NO-Synthase, was in einem starken Anstieg der NO-Produktion und somit der Peroxynitritbildung resultierte.Die dargestellten Daten deuten stark auf eine protektive Funktion der AMPK im vaskulären System hin und sollte als therapeutisches Ziel, nicht nur in Bezug auf diabetische Patienten, in Betracht gezogen werden.
Resumo:
Glukokortikoide (GCs) stellen wichtige Hormone in der Regulation der metabolischen Homöostase dar. Synthetische GCs, wie Dexamethasone (DEX), spielen eine essentielle Rolle in der Behandlung inflammatorischer Krankheiten. Jedoch sind unter einer Dexamethason-Therapie zahlreiche Nebenwirkungen bekannt, so z.B. auch die Entwicklung einer Hypertonie, in deren Pathogenese oxidativer Stress eine entscheidende Rolle spielt. Obwohl sich in den vergangenen Jahren zahlreiche Studien zum Ziel setzten die GC-induzierte Hypertonie (GC-HT) aufzuklären, sind die genauen Mechanismen bis heute unklar. Eine erhöhte Expression von NADPH Oxidasen (Nox) und eine Entkopplung der endothelialen NO Synthase (eNOS), die Hauptquellen reaktiver Sauerstoffspezies (ROS) im vaskulären System, tragen maßgeblich zur Pathogenese kardiovaskulärer Erkrankungen bei. Daher ist eine Beteiligung dieser Enzyme in GC-induziertem oxidativen Stress sehr wahrscheinlich. Folglich wurde die Hypothese aufgestellt, dass NADPH Oxidasen und eine entkoppelte eNOS die vielversprechendsten unter den zahlreichen involvierten pro- und anti-oxidativen Enzymen sind. Mit Fokus auf die oben genannten Systeme wurde in der vorliegenden Studie der Effekt von DEX mit Hilfe von in vivo (WKY Ratten) ebenso wie in vitro Experimenten (A7r5 und EA.hy 926 Zellen) untersucht. Dabei zeigte sich, dass Nox1, Nox4 und p22phox durch DEX unterschiedlich reguliert wurden. Nox1 wurde hoch-, Nox4 hingegen herunterreguliert, während p22phox unverändert blieb. Die Modufikation schien hierbei auf transkriptioneller und post-transkriptioneller Ebene stattzufinden. Durch die gegensätzliche Regulation von Nox1 und Nox4 bleibt die Nettowirkung der verschiedenen Nox Isoformen unklar. Immer mehr Studien bringen vaskulären oxidativen Stress mit der Pathogenese einer GC-HT in Zusammenhang, welche letztendlich zu einer verminderten Bioverfügbarkeit von Stickstoffmonoxid (NO) führt. Durch die eNOS produziertes NO stellt einen essentiellen Schutzfaktor der Blutgefäße dar. Eine verminderte NO-Bioverfügbarkeit könnte die Folge einer eNOS-Entkopplung darstellen, ausgelöst durch oxidativen Stress. Da die Verfügbarkeit von Tetrahydrobiopterin (BH4) entscheident ist für die Aktivität und enzymatische Kopplung der eNOS, beschäftigt sich die vorliegende Arbeit mit GC-induzierten Veränderungen in der BH4-Versorgung. Die Behandlung von EA.hy 926 Zellen mit DEX führte zu einer zeit- und konzentrationsabhängigen Herunterregulation von eNOS auf mRNA- und Proteinebene. Gleichzeitig wurde die Phosphorylierung an Serine1177 vermindert. Als maßgeblicher “Kopplungs-Schalter” kann BH4 endogen über zwei verschiedene Signalwege synthetisiert werden, welche durch die Enzyme GCH1 und DHFR reguliert werden. DEX führte zu einer zeit- und konzentrationsabhängigen Herunterregulation von BH4, BH2 und Biopterin, wobei ebenso das BH4 / BH2 -Verhältnis vermindert wurde. Beide Enzyme, GCH1 genauso wie DHFR, wurden auf mRNA- und Proteinebene herunterreguliert, was auf einen Effekt von GCs auf beide rnBH4-produzierenden Signalwege schließen lässt. Nach Behandlung mit DEX wurde die Produktion von NO in Endothelzellen maßgeblich vermindert. In ROS-Messungen zeigte sich eine Tendenz hin zu einer eNOS-Entkopplung, jedoch war es mit unserem experimentellen Aufbau nicht möglich, diese endgültig zu beweisen.rnZusammenfassend lässt sich sagen, dass die Behandlung mit GCs zu Veränderungen in beiden untersuchten Systemen, den NADPH Oxidasen ebenso wie dem eNOS-NO System, führte. DEX erhöhte die Expression von Nox1 in glatten Muskelzellen und reduzierte die Nox4-Expression in Endothelzellen. Gleichzeitig verminderte DEX die Verfügbarkeit von BH4 und inhibierte die Phosphorylierung / Aktivität von eNOS. Mithilfe weiterer Studien muss die endgültige Beteiligung von NADPH Oxidasen und einer eNOS-Entkopplung an oxidativem Stress in GC-HT abschließend aufgeklärt werden.rn
Resumo:
Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.
Resumo:
Im Rahmen dieser Arbeit wurde die Rolle von myelomonozytären Zellen, IFN-gamma (Interferon gamma), MyD88 (myeloid differentiation factor 88) und zugrundeliegenden Signalwege in der Angiotensin II (ATII)-induzierten vaskulären Inflammation, Dysfunktion und arteriellen Hypertonie untersucht. Wie bereits veröffentlichte Vordaten aus meiner Arbeitsgruppe zeigten, schützt die Depletion von Lysozym M (LysM)+ myelomonozytären Zellen (Diphteriatoxin-vermittelt in Mäusen, die transgen für den humanen Diphtheriatoxin-Rezeptor sind, LysMiDTR Mäuse) vor der ATII-induzierten vaskulären Dysfunktion und arterieller Hypertonie, und kann durch adoptiven Zelltransfer von Wildtyp Monozyten wiederhergestellt werden. In meiner Arbeit konnte ich zeigen, dass die Rekonstitution von Monozyten-depletierten LysMiDTR Mäusen mit Wildtyp Monozyten den Phänotyp der vaskulären Dysfunktion wiederherstellen kann, die Rekonstitution mit gp91phox-/y oder Agtr1-/- Monozyten jedoch nicht. Die Hypertonus-mediierenden Effekte dieser infiltrierenden Monozyten scheinen demnach von der intakten ATII und NADPH Oxidase Signalübertragung in diesen Zellen abhängig zu sein. Vermutlich ebenfalls für die Aktivierung der Monozyten funktionell wichtig sind IFN-gamma, produziert durch NK-Zellen, und der Transkriptionsfaktor T-bet (T-box expressed in T cells), exprimiert von NK-Zellen und Monozyten. IFN-gamma-/- Mäuse waren partiell geschützt vor der ATII-induzierten vaskulären Dysfunktion und charakterisiert durch reduzierte Level an Superoxid im Gefäß im Vergleich zu ATII-infundierten Wildtyp Mäusen. IFN-gamma-/- und T-bet defiziente Tbx21-/- Mäuse zeichneten sich ferner durch eine reduzierte ATII-mediierte Rekrutierung von NK1.1+ NK-Zellen, als ein Hautproduzent von IFN-gamma, sowie CD11b+GR-1low Interleukin-12 (IL-12) kompetenten Monozyten aus. Durch Depletions- und adoptive Transferexperimente konnte ich in dieser Arbeit NK-Zellen als essentielle Mitstreiter in der vaskulären Dysfunktion identifizieren und stellte fest, dass T-bet+LysM+ myelomonozytäre Zellen für die NK-Zellrekrutierung in die Gefäßwand und lokale IFN-gamma Produktion benötigt werden. Damit wurde erstmals NK-Zellen eine essentielle Rolle in der ATII-induzierten vaskulären Dysfunktion zugeschrieben. Außerdem wurde der T-bet-IFN-gamma Signalweg und die gegenseitige Monozyten-NK-Zellaktivierung als ein potentielles therapeutisches Ziel in kardiovaskulären Erkrankungen aufgedeckt. Des Weiteren identifizierte ich in meiner Arbeit MyD88 als ein zentrales Signalmolekül in der ATII-getriebenen Inflammation und vaskulären Gefäßschädigung. MyD88 Defizienz reduzierte den ATII-induzierten Anstieg des systolischen Blutdrucks und die endotheliale und glattmuskuläre vaskuläre Dysfunktion. Zusätzlich waren die vaskuläre Superoxid-Bildung sowie die Expressionslevel der NADPH Oxidase, der wichtigsten Quelle für oxidativem Stress im Gefäß, in ATII-infundierten MyD88-/- Mäusen im Vergleich zum Wildtyp reduziert. Mit Hilfe von durchflusszytometrischen Analysen deckte ich zudem auf, dass die ATII-induzierte Einwanderung von CD45+ Leukozyten, insbesondere CD11b+Ly6G-Ly6Chigh inflammatorischen Monozyten in MyD88-/- Mäusen signifikant abgeschwächt war. Diese Resultate wurden durch immunhistochemische Untersuchung von Aortengewebe auf CD68+, F4/80+ und Nox2+ Makrophagen/Phagozyten sowie Expressionsanalysen von Inflammationsmarkern untermauert. Analysen der mRNA Expression in Aortengewebe zeigten ferner eine in Wildtyp Mäusen nach ATII Infusion tendenziell gesteigerte Expression von inflammatorischen Monozytenmakern sowie eine abnehmende Expression von reparativen Monozytenmarken, während dieser Shift zu einem proinflammatorsichen Phänotyp in MyD88-/- blockiert zu sein schien. Dies zeigt eine Rolle von MyD88 in der terminalen Differenzierung von myelomonozytären Zellen an. Um dies weitergehend zu untersuchen und aufzudecken, ob die MyD88 Effekte abhängig sind von Zellen der hämatopoetischen Linie oder Gewebszellen, wurden Knochenmarktransferexperimente durchgeführt. MyD88 Defizienz in Knochenmark-abstammende Zellen reduzierte die ATII-induzierte vaskuläre Dysfunktion und Infiltration der Gefäßwand mit CD45+ Leukozyten und inflammatorischen myelomonozytären Zellen. Die protektiven Effekte der MyD88 Defizienz in der Angiotensin II-induzierten Inflammation konnten nicht auf Signalwege über die Toll-like Rezeptoren TLR2, -7 oder -9 zurückgeführt werden, wie die Untersuchung der vaskulären Reaktivität entsprechender Knockout Mäuse zeigte. Zusammenfassend konnte ich in meiner Arbeit zeigen, dass die Infiltration der Gefäßwand mit Nox2+AT1R+T-bet+MyD88+ myelomonozytären Zellen und die Wechselwirkung und gegenseitige Aktivierung dieser Zellen mit IFN-gamma produzierenden NK-Zellen eine zentrale Bedeutung in der Pathogenese der Angiotensin II (ATII)-induzierten vaskulären Dysfunktion, Inflammation und arteriellen Hypertonie einnehmen.
Resumo:
In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.
Resumo:
The acetabular labrum plays an important role in hip joint stability and protection of the articular cartilage of the hip. Despite this, few investigators have evaluated its microscopic vasculature and, to our knowledge, none has assessed its macroscopic blood supply. The purposes of this study were to identify the origin and course of the vascular supply to the acetabular labrum to determine if this blood supply is affected by a labral tear.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
High-altitude pulmonary edema is a life-threatening condition occurring in predisposed but otherwise healthy individuals. It therefore permits the study of underlying mechanisms of pulmonary edema in the absence of confounding factors such as coexisting cardiovascular or pulmonary disease, and/or drug therapy. There is evidence that some degree of asymptomatic alveolar fluid accumulation may represent a normal phenomenon in healthy humans shortly after arrival at high altitude. Two fundamental mechanisms then determine whether this fluid accumulation is cleared or whether it progresses to HAPE: the quantity of liquid escaping from the pulmonary vasculature and the rate of its clearance by the alveolar respiratory epithelium. The former is directly related to the degree of hypoxia-induced pulmonary hypertension, whereas the latter is determined by the alveolar epithelial sodium transport. Here, we will review evidence that, in HAPE-prone subjects, impaired pulmonary endothelial and epithelial NO synthesis and/or bioavailability may represent a central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and, in turn, capillary stress failure and alveolar fluid flooding. We will then demonstrate that exaggerated pulmonary hypertension, although possibly a conditio sine qua non, may not always be sufficient to induce HAPE and how defective alveolar fluid clearance may represent a second important pathogenic mechanism.
Resumo:
In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.
Resumo:
In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.
Resumo:
We have previously shown that EphB4 and ephrin-B2 are differentially expressed in the mammary gland and that their deregulated expression in the mammary epithelium of transgenic mice leads to perturbations of the mammary parenchyma and vasculature. In addition, overexpression of EphB4 and expression of a truncated ephrin-B2 mutant, capable of receptor stimulation but incapable of reverse signalling, confers a metastasising phenotype on NeuT initiated mouse mammary tumours. We have taken advantage of this transgenic tumour model to compare stem cell characteristics between the non-metastasising and metastasising mammary tumours. We analysed the expression of the proliferation attenuating p21(waf) gene, which was significantly increased in the metastasising tumours. Moreover, we compared the expression of CK-19, Sca-1, CD24 and CD49f as markers for progenitor cells exhibiting a decreasing differentiation grade. Sca-1 expressing cells were the earliest progenitors detected in the non-metastasising NeuT induced tumours. The metastasising NeuT/EphB4 tumours were enriched in CD24 expressing cells, whereas the metastasising NeuT/truncated ephrin-B2 tumours contained in addition significant amounts of CD49f expressing cells. The same cell populations were also enriched in mammary glands of single transgenic MMTV-EphB4 and MMTV-truncated ephrin-B2 females indicating that deregulated EphB4-ephrin-B2 signalling interferes with the homeostasis of the stem/progenitor cell pool before tumour formation is initiated. Since the same cell populations are enriched in the normal tissue, primary mammary tumours and metastases we conclude that these progenitor cells were the origin of tumour formation and that this change in the tumour origin has led to the acquisition of the metastatic tumour phenotype.