952 resultados para Upper Paleozoic
Resumo:
Lasaea rubra is an inbreeding bivalve species, living at most heights on rocky shores. Freshly collected animals from different shore heights showed significantly different upper median lethal temperatures (MLTs), with upper shore animals having higher MLTs than lower shore specimens. Experiments with animals acclimated for at least one month to a single temperature (15°C) demonstrated that these differences in upper MLT were unaffected by thermal acclimation. Electrophoretic investigation showed that the differences in thermal response had a genetic basis. Homogeneous populations of the high-water inbred line (‘Inbred line A’) had a higher MLT than homogeneous populations of ‘Inbred line C’ which was found on the middle and lower shore. No differences were detected between the MLTs of separate populations of Inbred lines A or C. A third inbred line (‘Inbred line B’) was found on the middle shore, but no homogeneous populations were found. However, indirect evidence suggests that Inbred line B has a thermal response intermediate between those of Inbred lines A and C. Study of populations made up of mixtures of inbred lines confirmed the relationship between upper MLTs and genetic composition of the population.
Resumo:
During lateral leg raising, a synergistic inclination of the supporting leg and trunk in the opposite direction to the leg movement is performed in order to preserve equilibrium. As first hypothesized by Pagano and Turvey (J Exp Psychol Hum Percept Perform, 1995, 21:1070-1087), the perception of limb orientation could be based on the orientation of the limb's inertia tensor. The purpose of this study was thus to explore whether the final upper body orientation (trunk inclination relative to vertical) depends on changes in the trunk inertia tensor. We imposed a loading condition, with total mass of 4 kg added to the subject's trunk in either a symmetrical or asymmetrical configuration. This changed the orientation of the trunk inertia tensor while keeping the total trunk mass constant. In order to separate any effects of the inertia tensor from the effects of gravitational torque, the experiment was carried out in normo- and microgravity. The results indicated that in normogravity the same final upper body orientation was maintained irrespective of the loading condition. In microgravity, regardless of loading conditions the same (but different from the normogravity) orientation of the upper body was achieved through different joint organizations: two joints (the hip and ankle joints of the supporting leg) in the asymmetrical loading condition, and one (hip) in the symmetrical loading condition. In order to determine whether the different orientations of the inertia tensor were perceived during the movement, the interjoint coordination was quantified by performing a principal components analysis (PCA) on the supporting and moving hips and on the supporting ankle joints. It was expected that different loading conditions would modify the principal component of the PCA. In normogravity, asymmetrical loading decreased the coupling between joints, while in microgravity a strong coupling was preserved whatever the loading condition. It was concluded that the trunk inertia tensor did not play a role during the lateral leg raising task because in spite of the absence of gravitational torque the final upper body orientation and the interjoint coupling were not influenced.
Resumo:
In this paper we investigate the validity of the optically thin assumption in the transition region of the late-type star AU Mic. We use Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of the C III multiplet and O VI resonance lines, hence yielding information at two different levels within the atmosphere. Significant deviations from the optically thin fluxes are found for C III in both quiescent and flare spectra, where only 60% of the flux is actually observed. This could explain the apparent deviation of C III observed in emission measure distributions. We utilize escape probabilities for both homogeneous and inhomogeneous geometries and calculate optical depths as high as 10 for the C III 1175.71 Angstrom component of the multiplet. Using a lower limit to the electron density (10(11) cm(-3))we derive an effective thickness of
Resumo:
We present far-UV and UV spectroscopic observations of Proxima Centauri obtained as part of our continued investigation into the optically thin approximation assumed for the transition regions of late-type stars. Significant opacity is found in the C III lines during both the quiescent and flaring states of Proxima Cen, with up to 70% of the expected flux being lost in the latter. Our findings cast some doubt on the suitability of the C III lambda977 line for estimating the electron density in stellar atmospheres. However, the opacity has no significant effect on the observed line widths. We calculate optical depths for homogeneous and inhomogeneous geometries and estimate an electron density of 6 x 10(10) cm(-3) for the transition region using the O IV line ratios at 1400 Angstrom. The combination of electron density and optical depth indicates path lengths as low as approximate to 10 km, which are in excellent agreement with estimates of the small-scale structure seen in the solar transition region.
Resumo:
We present FUV and UV spectroscopic observations of AD Leonis, with the aim of investigating opacity effects in the transition regions of late-type stars. The C III lines in FUSE spectra show significant opacity during both the quiescent and flaring states of AD Leonis, with up to 30% of the expected flux being lost during the latter. Other FUSE emission lines tested for opacity include those of O VI, while C IV, Si IV and N V transitions observed with STIS are also investigated. These lines only reveal modest amounts of opacity with losses during flaring of up to 20%. Optical depths have been calculated for homogeneous and inhomogeneous geometries, giving path lengths of approximate to 20 - 60 km and approximate to 10 - 30 km, respectively, under quiescent conditions. However path lengths derived during flaring are approximate to 2 - 3 times larger. These values are in excellent agreement with both estimates of the small-scale structure observed in the solar transition region, and path lengths derived previously for several other active late-type stars.