965 resultados para Ultrahigh Temperature
Resumo:
Poor water quality condition has been pointed out as one of the major causes for the high mortality of ornamental fishes exported from the state of Amazonas, Brazil. The purpose of the current study was to define water quality standards for cardinal tetra (Paracheirodon axelrodi), by establishing the lower and higher for lethal temperature (LT50), lethal concentration (LC50) for total ammonia and nitrite and LC50 for acid and alkaline pH. According to the findings, cardinal tetra is rather tolerant to high temperature (33.3 ºC), to a wide pH range (acid pH=2.9 and alkaline pH=8.8) and to high total ammonia concentration (23.7 mg/L). However, temperatures below 19.6 ºC and nitrite concentrations above 1.1 mg/L NO2- may compromise fish survival especially during long shipment abroad.
Resumo:
Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatá verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.
Resumo:
This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).
Resumo:
Whether at the zero spin density m = 0 and finite temperatures T > 0 the spin stiffness of the spin-1/2 XXX chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m = 0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L → ∞, for any finite, nonzero temperature, which implies the absence of ballistic transport for T > 0 for m = 0. Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999)] leads to the exact stiffness values at finite temperature T > 0 for models whose stiffness is finite at T = 0, similar to the spin stiffness of the spin-1/2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.
Resumo:
We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Surgical procedures such as osteotomy and hip replacement involve the cutting of bone with the aid of various manual and powered cutting instruments including manual and powered bone saws. The basic mechanics of bone sawing processes are consistent with most other material sawing processes such as for wood or metal. Frictional rubbing between the blade of the saw and the bone results in the generation of localised heating of the cut bone. Research studies have been carried out which consider the design of the bone saw which deals with specifics of the saw teeth geometry and research which examines the effect of drilling operations on heating of the bone has shown that elevated temperatures will occur from frictional overheating. This overheating in localised areas is known to have an impact on the rate of healing of the bone post operation and the sharpness life of the blade. The purpose of this study was to measure the temperature at three zones at fixed intervals of 3mm, 6mm, and 9mm away from the cutting zone. It should be noted that it was the first time that this measurement technique was used to measure the temperature gradient through the bone specimen thereby establishing the extent to which clinicians are experiencing thermal injury during sawing of bone while using a reciprocating saw. The effect of various cutting feed rate on temperature elevation was also investigated in this research. The results showed that there will be a region of bone at least 9mm either side of the cutting blade experiencing thermal injury as temperatures in this region exceeded the threshold temperature of 44°C for necrosis (cell death).
Resumo:
მოყვანილია ექვივალენტურ-ეფექტური ტემპერატურის საშუალოთვიური მნიშვნელობების ფარდობითი ანალიზი საქართველოსა და ბრაზილიის (ალაგოასის შტატი) 8 ქალაქისათვის.
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2013
Resumo:
The purpose of the research is the creation of mathematical models in MATLAB based on the double exponential model of the photovoltaic cell. The developed model allows for different physical and environmental parameters. An equivalent circuit of the model includes a photocurrent source, two diodes, and a series and parallel resistance. The paper presents the simulation results for each parameter. The simulation data are displayed graphically and numerical results are saved in a file.
Resumo:
Body color polymorphism of urban populations of cosmopolite fly Drosophila kikkawai Burla, 1954 was investigated in relation to its possible association with environmental temperature. Samples of D. kikkawai were collected in spring, summer, autumn and winter between 1987 to 1988, in zones with different levels of urbanization in the southern Brazilian city of Porto Alegre, Rio Grande do Sul. A clear association was observed between darker flies and both seasons with low temperatures and areas of low urbanization (where temperature is generally lower than in urbanized areas). Results of preliminary laboratory experiments involving six generations of flies grown in chambers at temperatures of 17º and 25ºC confirmed this tendency to a relationship between body color and temperature, with allele frequency of the main gene involved in body pigmentation changing over time.
Resumo:
Drosophila willistoni (Sturtevant, 1916) is a species of the willistoni group of Drosophila having wide distribution from the South of USA (Florida) and Mexico to the North of Argentina. It has been subject of many evolutionary studies within the group, due to its considerable ability to successfully occupy a wide range of environments and also because of its great genetic variability expressed by different markers. The D. willistoni 17A2 strain was collected in 1991 in the state of Rio Grande do Sul, Brazil (30°05'S, 51°39'W), and has been maintained since then at the Drosophila laboratory of UFRGS. Different to the other D. willistoni strains maintained in the laboratory, the 17A2 strain spontaneously produced mutant males white-like (white eyes) and sepia-like (brown eyes) in stocks held at 17°C. In order to discover if this strain is potentially hypermutable, we submitted it to temperature stress tests. Eighteen isofemale strains were used in our tests and, after the first generation, all the individuals produced in each strain were maintained at 29°C. Different phenotype alterations were observed in subsequent generations, similar to mutations already well characterized in D. melanogaster (white, sepia, blistered and curly). In addition, an uncommon phenotype alteration with an apparent fusion of the antennae was observed, but only in the isofemale line nº 31. This last alteration has not been previously described as a mutation in the D. melanogaster species. Our results indicate that the D. willistoni 17A2 strain is a candidate for hypermutability, which presents considerable cryptic genetic variability. Different factors may be operating for the formation of this effect, such as the mobilization of transposable elements, effect of inbreeding and alteration of the heat-shock proteins functions.
Resumo:
Metamysidopsis atlantica elongata (Bascescu, 1968) is a common mysid in the surf zone of sandy beaches from the state of Rio Grande do Sul, Brazil, where it is frequently recorded forming dense aggregations. Trough laboratory trials, behavioral responses to salinity (10, 20, 25, 28, 30, 40 e 45), temperature (10, 15, 20, 30±1ºC) and light (yes/no) were tested using adult males, adult females and juveniles. Although there was no response to temperature, the species showed clear response to salinity and light. In the presence of light, organisms remained in the bottom of the aquaria, but moved to surface when bottom salinities were increased. In the absence of light, adults moved to the surface. However, juveniles moved down to or remained on the bottom, maybe as a response to avoid adult predation.