999 resultados para UDK:321
Resumo:
The Miocene Climatic Optimum (~17-14.7 Ma) represents one of several major interruptions in the long-term cooling trend of the past 50 million years. To date, the processes driving high-amplitude climate variability and sustaining global warmth during this remarkable interval remain highly enigmatic. We present high-resolution benthic foraminiferal and bulk carbonate stable isotope records in an exceptional, continuous, carbonate-rich sedimentary archive (Integrated Ocean Drilling Program Site U1337, eastern equatorial Pacific Ocean), which offer a new view of climate evolution over the onset of the Climatic Optimum. A sharp decline in d18O and d13C at ~16.9 Ma, contemporaneous with a massive increase in carbonate dissolution, demonstrates that abrupt warming was coupled to an intense perturbation of the carbon cycle. The rapid recovery in d13C at ~16.7 Ma, ~200 k.y. after the beginning of the MCO, marks the onset of the first carbon isotope maximum within the long-lasting "Monterey Excursion". These results lend support to the notion that atmospheric pCO2 variations drove profound changes in the global carbon reservoir through the Climatic Optimum, implying a delicate balance between changing CO2 fluxes, rates of silicate weathering and global carbon sequestration. Comparison with a high-resolution d13C record spanning the onset of the Cretaceous Oceanic Anoxic Event 1a (~120 Ma ago) reveals common forcing factors and climatic responses, providing a long-term perspective to understand climate-carbon cycle feedbacks during warmer periods of Earth's climate with markedly different atmospheric CO2 concentrations.
Resumo:
Sediment cores collected from the Eastern Equatorial Pacific Ocean display a clear positive second-order relationship between wet bulk density (WBD) and carbonate content. This has long interested the paleoceanography community because detailed Gamma Ray Attenuation Porosity Evaluator (GRAPE) measurements, which approximate WBD, might be used to determine records of carbonate content at very high temporal resolution. Although general causes for the relationship are known, they have not been presented and discussed systematically on the basis of first principles. In this study, we measure the mass and carbonate content of 50 sediment samples with known WBD from Site U1338, before and after rinsing with de-ionized water; we also determine the mass related proportion of coarse (> 63 µm) material. Samples exhibit clear relationships between WBD, carbonate content, mass loss upon rinsing, and grain size. We develop a series of mathematical expressions to describe these relationships, and solve them numerically. As noted by previous workers, the second-order relationship between WBD and carbonate content results from the mixing of biogenic carbonate and biogenic silica, which have different grain densities and different porosities. However, at high carbonate content, a wide range in WBD occurs because samples with greater amounts of coarse carbonate have higher porosity. Moreover compaction impacts carbonate particles more than biogenic silica particles. As such, a single two-component equation cannot be used to determine carbonate content accurately across depth intervals where both the porosity and type of carbonate vary. Instead, the WBD-carbonate relationship is described by an infinite series of curves, each which represents mixing of multiple sediment components with different densities and porosities. Dissolved ions also precipitate from pore space during sample drying, which adds mass to the sediment. Without rinsing samples, simple empirical relationships between WBD and carbonate content are further skewed by salt dilution.
Resumo:
Mode of access: Internet.
Resumo:
For chorus (SATB) and orchestra; arr. for chorus (SATB) and piano.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.