973 resultados para Typical load profile
Resumo:
Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.
Resumo:
Most departmental computing infrastructure reflects the state of networking technology and available funds at the time of construction, which converge in a preconceived notion of homogeneity of network architecture and usage patterns. The DMAN (Digital Media Access Network) project, a large-scale server and network foundation for the Hong Kong Polytechnic University's School of Design was created as a platform that would support a highly complex academic environment while giving maximum freedom to students, faculty and researchers through simplicity and ease of use. As a centralized multi-user computation backbone, DMAN faces an extremely hetrogeneous user and application profile, exceeding implementation and maintenance challenges of typical enterprise, and even most academic server set-ups. This paper sumarizes the specification, implementation and application of the system while describing its significance for design education in a computational context.
Resumo:
Information and Communication Technologies (ICTs) provide great promise for the future of education. In the Asia-Pacific region, many nations have started working towards the comprehensive development of infrastructure to enable the development of strong networked educational systems. In Queensland there have been significant initiatives in the past decade to support the integration of technology in classrooms and to set the conditions for the enhancement of teaching and learning with technology. One of the great challenges is to develop our classrooms to make the most of these technologies for the benefit of student learning. Recent research and theory into cognitive load, suggests that complex information environments may well impose a barrier on student learning. Further, it suggests that teachers have the capacity to mitigate against cognitive load through the way they prepare and support students engaging with complex information environments. This chapter compares student learning at different levels of cognitive load to show that learning is enhanced when integrating pedagogies are employed to mitigate against high-load information environments. This suggests that a mature policy framework for ICTs in education needs to consider carefully the development of professional capacities to effectively design and integrate technologies for learning.
Resumo:
This paper analyzes the performance of some of the widely used voltage stability indices, namely, singular value, eigenvalue, and loading margin with different static load models. Well-known ZIP model is used to represent loads having components with different power to voltage sensitivities. Studies are carried out on a 10-bus power system and the New England 39-bus power system models. The effects of variation of load model on the performance of the voltage stability indices are discussed. The choice of voltage stability index in the context of load modelling is also suggested in this paper.
Resumo:
Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.
Resumo:
There is evidence that many heating, ventilating & air conditioning (HVAC) systems, installed in larger buildings, have more capacity than is ever required to keep the occupants comfortable. This paper explores the reasons why this can occur, by examining a typical brief/design/documentation process. Over-sized HVAC systems cost more to install and operate and may not be able to control thermal comfort as well as a “right-sized” system. These impacts are evaluated, where data exists. Finally, some suggestions are developed to minimise both the extent of, and the negative impacts of, HVAC system over-sizing, for example: • Challenge “rules of thumb” and/or brief requirements which may be out of date. • Conduct an accurate load estimate, using AIRAH design data, specific to project location, and then resist the temptation to apply “safety factors • Use a load estimation program that accounts for thermal storage and diversification of peak loads for each zone and air handling system. • Select chiller sizes and staged or variable speed pumps and fans to ensure good part load performance. • Allow for unknown future tenancies by designing flexibility into the system, not by over-sizing. For example, generous sizing of distribution pipework and ductwork will allow available capacity to be redistributed. • Provide an auxiliary tenant condenser water loop to handle high load areas. • Consider using an Integrated Design Process, build an integrated load and energy use simulation model and test different operational scenarios • Use comprehensive Life Cycle Cost analysis for selection of the most optimal design solutions. This paper is an interim report on the findings of CRC-CI project 2002-051-B, Right-Sizing HVAC Systems, which is due for completion in January 2006.
Resumo:
Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved
Resumo:
The knee forces and moments estimated by inverse dynamics and directly measured by a multiaxial transducer were compared during the gait of a transfemoral amputee. The estimated and directly measured forces and moments were relatively close. However, 3D inverse dynamics estimated only partially the forces and moments associated with the deformation of the prosthetic foot and locking of knee mechanism.
Resumo:
In the critical situation of prevailing overweight transportation and crag-fast enforcement in Chinese highway networks, this paper develops a methodological framework for truck weight regulation (TWR) evaluation using System Dynamics (SD). Composed of five interrelated subsystems, the framework is able to capture the highway, vehicle and freight variables that influence the effect of TWR and transportation efficiency over time. It specifically describes the development and use of the Truck Weight Regulation Evaluating Model (TWREM) for the highway freight system in Anhui province, China. Three policy alternatives are analyzed: 1) tolerant policy approach, which allows heavy-duty freight activity to continue in its current state, and is shown to lead to nearly catastrophic results; 2) rigid policy approach, which would terminate all heavy-duty freight activities immediately, and is shown to be economically infeasible; and 3) moderate policy approach, which advocates a gradual reduction of heavy-duty freight activities to a moderate state. The simulation results shows that the moderate policy approach is the most appropriate option to solve the social and economic problems arising from the activities of the heavy-duty freight transportation in Anhui. In addition, some suggestions of TWR policy in China are also made in this paper.
Resumo:
The requirement for improved efficiency whilst maintaining system security necessitates the development of improved system analysis approaches and the development of advanced emergency control technologies. Load shedding is a type of emergency control that is designed to ensure system stability by curtailing system load to match generation supply. This paper presents a new adaptive load shedding scheme that provides emergency protection against excess frequency decline, whilst minimizing the risk of line overloading. The proposed load shedding scheme uses the local frequency rate information to adapt the load shedding behaviour to suit the size and location of the experienced disturbance. The proposed scheme is tested in simulation on a 3-region, 10-generator sample system and shows good performance.
Resumo:
In this paper, cognitive load analysis via acoustic- and CAN-Bus-based driver performance metrics is employed to assess two different commercial speech dialog systems (SDS) during in-vehicle use. Several metrics are proposed to measure increases in stress, distraction and cognitive load and we compare these measures with statistical analysis of the speech recognition component of each SDS. It is found that care must be taken when designing an SDS as it may increase cognitive load which can be observed through increased speech response delay (SRD), changes in speech production due to negative emotion towards the SDS, and decreased driving performance on lateral control tasks. From this study, guidelines are presented for designing systems which are to be used in vehicular environments.
Resumo:
A Positive Buck- Boost (PBB) converter is a known DC-DC converter that can operate in step up and step down modes. Unlike Buck, Boost, and Inverting Buck Boost converters, the inductor current of a PBB can be controlled independently of its voltage conversion ratio. In other words, the inductor of PBB can be utilised as an energy storage unit in addition to its main function of energy transfer. In this paper, the capability of PBB to store energy has been utilised to achieve robustness against input voltage fluctuations and output current changes. The control strategy has been developed to keep accuracy, affordability, and simplicity acceptable. To improve the efficiency of the system a Smart Load Controller (SLC) has been suggested. Applying SLC extra current storage occurs when there is sudden loads change otherwise little extra current is stored.
Resumo:
To allocate and size capacitors in a distribution system, an optimization algorithm, called Discrete Particle Swarm Optimization (DPSO), is employed in this paper. The objective is to minimize the transmission line loss cost plus capacitors cost. During the optimization procedure, the bus voltage, the feeder current and the reactive power flowing back to the source side should be maintained within standard levels. To validate the proposed method, the semi-urban distribution system that is connected to bus 2 of the Roy Billinton Test System (RBTS) is used. This 37-bus distribution system has 22 loads being located in the secondary side of a distribution substation (33/11 kV). Reducing the transmission line loss in a standard system, in which the transmission line loss consists of only about 6.6 percent of total power, the capabilities of the proposed technique are seen to be validated.
Resumo:
This article describes the development and validation of a multi-dimensional scale for measuring managers’ perceptions of the range of factors that routinely guide their decision-making processes. An instrument for identifying managerial ethical profiles (MEP) is developed by measuring the perceived role of different ethical principles in the decision-making of managers. Evidence as to the validity of the multidimensionality of the ethical scale is provided, based on the comparative assessment of different models for managerial ethical decision-making. Confirmatory Factor Analysis (CFA) supported a eight-factor model including two factors for each of the main four schools of moral philosophy. Future research needs and the value of this measure to business ethics are discussed.
Resumo:
Biotribology, the study of lubrication, wear and friction within the body, has become a topic of high importance in recent times as we continue to encounter debilitating diseases and trauma that destroy function of the joints. A highly successful surgical procedure to replace the joint with an artificial equivalent alleviates dysfunction and pain. However, the wear of the bearing surfaces in prosthetic joints is a significant clinical problem and more patients are surviving longer than the life expectancy of the joint replacement. Revision surgery is associated with increased morbidity and mortality and has a far less successful outcome than primary joint replacement. As such, it is essential to ensure that everything possible is done to limit the rate of revision surgery. Past experience indicates that the survival rate of the implant will be influenced by many parameters, of primary importance, the material properties of the implant, the composition of the synovial fluid and the method of lubrication. In prosthetic joints, effective boundary lubrication is known to take place. The interaction of the boundary lubricant and the bearing material is of utmost importance. The identity of the vital active ingredient within synovial fluid (SF) to which we owe the near frictionless performance of our articulating joints has been the quest of researchers for many years. Once identified, tribo tests can determine what materials and more importantly what surfaces this fraction of SF can function most optimally with. Surface-Active Phospholipids (SAPL) have been implicated as the body’s natural load bearing lubricant. Studies in this thesis are the first to fully characterise the adsorbed SAPL detected on the surface of retrieved prostheses and the first to verify the presence of SAPL on knee prostheses. Rinsings from the bearing surfaces of both hip and knee prostheses removed from revision operations were analysed using High Performance Liquid Chromatography (HPLC) to determine the presence and profile of SAPL. Several common prosthetic materials along with a novel biomaterial were investigated to determine their tribological interaction with various SAPLs. A pin-on-flat tribometer was used to make comparative friction measurements between the various tribo-pairs. A novel material, Pyrolytic Carbon (PyC) was screened as a potential candidate as a load bearing prosthetic material. Friction measurements were also performed on explanted prostheses. SAPL was detected on all retrieved implant bearing surfaces. As a result of the study eight different species of phosphatidylcholines were identified. The relative concentrations of each species were also determined indicating that the unsaturated species are dominant. Initial tribo tests employed a saturated phosphatidylcholine (SPC) and the subsequent tests adopted the addition of the newly identified major constituents of SAPL, unsaturated phosphatidylcholine (USPC), as the test lubricant. All tribo tests showed a dramatic reduction in friction when synthetic SAPL was used as the lubricant under boundary lubrication conditions. Some tribopairs showed more of an affinity to SAPL than others. PyC performed superior to the other prosthetic materials. Friction measurements with explanted prostheses verified the presence and performance of SAPL. SAPL, in particular phosphatidylcholine, plays an essential role in the lubrication of prosthetic joints. Of particular interest was the ability of SAPLs to reduce friction and ultimately wear of the bearing materials. The identification and knowledge of the lubricating constituents of SF is invaluable for not only the future development of artificial joints but also in developing effective cures for several disease processes where lubrication may play a role. The tribological interaction of the various tribo-pairs and SAPL is extremely favourable in the context of reducing friction at the bearing interface. PyC is highly recommended as a future candidate material for use in load bearing prosthetic joints considering its impressive tribological performance.