995 resultados para Tumor Microenvironment
Resumo:
Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and A play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.
Resumo:
Because CD4(+) T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4(+) T cells could enhance an antitumor response mediated by similarly gene-engineered CD8(+) T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4(+) and CD8(+) cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4(+) and CD8(+) T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2(+) tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8(+) and CD4(+) T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8(+)) engineered T cells. Transferred CD4(+) T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent re-challenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8(+) and CD4(+) T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.
Resumo:
Purpose: To evaluate the risk of geographic miss associated with the classic four-field ""box"" irradiation technique and to define the variables that predict this risk. Materials and Methods: The study population consisted of 80 patients with uterine cervix cancer seen between 2001 and 2006. Median age was 55 years (23-82 years), and 72 (90%) presented with squamous cell carcinoma. Most patients (68.7%) presented with locally advanced disease (IIb or more). Magnetic resonance imaging findings from before treatment were compared with findings from simulation of the conventional four-field ""box"" technique done with rectal contrast. Study variables included tumor volume; involvement of vagina, parametrium, bladder, or rectum; posterior displacement of the anterior rectal wall; and tumor anteroposterior diameter (APD). Margins were considered adequate when the target volume (primary tumor extension, whole uterine body, and parametrium) was included within the field limits and were at least 1 cm in width. Results: Field limits were inadequate in 45 (56%) patients: 29 (36%) patients at the anterior and 28 (35%) at the posterior border of the lateral fields. Of these, 12 patients had both anterior and posterior miss, and this risk was observed in all stages of the disease (p = 0.076). Posterior displacement of the anterior rectal wall beyond S2-S3 was significantly correlated with the risk of geographic miss (p = 0.043). Larger tumors (APD 6 cm or above and volume above 50 cm(3)) were also significantly correlated with this risk (p = 0.004 and p = 0.046, respectively). Conclusions: Posterior displacement of the anterior rectal wall, tumor APD, and volume can be used as guidance in evaluating the risk of geographic miss. (C) 2009 Elsevier Inc.
Resumo:
Context: Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated inhumancancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. Objectives: In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. Design: We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets. Results: Our results show that miR-1 expression is drastically down-regulated in thyroid adenomas and carcinomas in comparison with normal thyroid tissue. Interestingly, miR-1 down-regulation was also found in thyroid hyperproliferative nonneoplastic lesions such as goiters. We identified the CCND2, coding for the cyclin D2 (CCND2) protein that favors the G1/S transition, CXCR4, and SDF-1 alpha genes, coding for the receptor for the stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-1/CXCL12, respectively, as miR-1 targets. An inverse correlation was found between miR-1 expression and CXC chemokine receptor 4 (CXCR4) and SDF-1 alpha protein levels in papillary and anaplastic thyroid carcinomas. Consistent with a role of the CCND2 protein in cell proliferation and CXCR4 and SDF-1 alpha proteins in cell invasion and metastasis, functional studies demonstrate that miR-1 is able to inhibit thyroid carcinoma cell proliferation and migration. Conclusions: These results indicate the involvement of miR-1 in thyroid cell proliferation and migration, validating a role of miR-1 down-regulation in thyroid carcinogenesis. (J Clin Endocrinol Metab 96: E1388-E1398, 2011)
Resumo:
Wilms tumor (WT), a tumor composed of three histological components - blastema (BL), epithelia and stroma - is considered an appropriate model system to study the biological relationship between differentiation and tumorigenesis. To investigate molecular associations between nephrogenesis and WT, the gene expression pattern of individual cellular components was analyzed, using a customized platform containing 4,608 genes. WT gene expression patterns were compared to genes regulated during kidney differentiation. BL had a closer gene expression pattern to the earliest stage of normal renal development. The BL gene expression pattern was compared to that of fetal kidney (FK) and also between FK and mature kidney, identifying 25 common de-regulated genes supposedly involved in the earliest events of WT onset. Quantitative RT-PCR was performed, confirming the difference in expression levels for 13 of 16 genes (81.2%) in the initial set and 8 of 13 (61.5%) in an independent set of samples. An overrepresentation of genes belonging to the Wnt signaling pathway was identified, namely PLCG2, ROCK2 and adenomatous polyposis coli (APC). Activation of the Wnt pathway was confirmed in WT, using APC at protein level and PLCG2 at mRNA and protein level. APC showed positive nuclear immunostaining for an independent set of WT samples, similarly to the FK in week 11. Lack of PLCG2 expression was confirmed in WT and in FK until week 18. Taken together, these results provided molecular evidence of the recapitulation of the embryonic kidney by WT as well as involvement of the Wnt pathway in the earliest events of WT onset. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Galectin-3 is a glycan-binding protein that mediates cell-cell and/or cell-extracellular matrix (ECM) interactions. Although galectin-3 is implicated in the progression of various types of cancers, the mechanisms by which galectin-3 enhances metastasis remain unclear. In order to elucidate the role of galectin-3 in the complex multistage process of cancer metastasis, we examined galectin-3 and galectin-3-binding site expression in a series of 82 spontaneous canine mammary tumors (CMT) and two CMT cell lines. Benign CMT tumors exhibited strong nuclear/cytoplasmic galectin-3 immunostaining, whereas malignant CMT tumors and metastases exhibited dramatically decreased galectin-3 expression with the majority of the immunostaining confined to the cytoplasm. Interestingly, intravascular tumor cells overexpressed galectin-3 regardless of their location. CMT-U27 xenografts displayed the same pattern of galectin-3 expression found in spontaneous malignant CMT. In parallel with the downregulation of galectin-3, malignant CMT displayed an overall loss of galectin-3-binding sites in the ECM and focal expression of galectin-3-binding sites mainly detected in intravascular tumor cells and endothelium. Furthermore, loss of galectin-3-binding sites was correlated with the downregulation of GLT25D1, a beta (1-O) galactosyltransferase that modifies collagen, and upregulation of stromal galectin-1. Finally, GLT25D1 mRNA expression was strikingly downregulated in malignant CMT-U27 compared with the benign cell line, and its expression was further de-creased in a galectin-3 knockdown CMT-U27 cell line. We therefore hypothesized that the loss of galectin-3-binding sites in the ECM in conjunction with the overexpression of galectin-3 in specific tumor cell subpopulations are crucial events for the development of mammary tumor metastases.
Resumo:
The importance of epithelial-stroma interaction in normal breast development and tumor progression has been recognized. To identify genes that were regulated by these reciprocal interactions, we cocultured a nonmalignant (MCF10A) and a breast cancer derived (MDA-MB231) basal cell lines, with fibroblasts isolated from breast benign-disease adjacent tissues (NAF) or with carcinoma-associated fibroblasts (CAF), in a transwell system. Gene expression profiles of each coculture pair were compared with the correspondent monocultures, using a customized microarray. Contrariwise to large alterations in epithelial cells genomic profiles, fibroblasts were less affected. In MDA-MB231 highly represented genes downregulated by CAF derived factors coded for proteins important for the specificity of vectorial transport between ER and golgi, possibly affecting cell polarity whereas the response of MCF10A comprised an induction of genes coding for stress responsive proteins, representing a prosurvival effect. While NAF downregulated genes encoding proteins associated to glycolipid and fatty acid biosynthesis in MDA-MB231, potentially affecting membrane biogenesis, in MCF10A, genes critical for growth control and adhesion were altered. NAFs responded to coculture with MDA-MB231 by a decrease in the expression of genes induced by TGF beta 1 and associated to motility. However, there was little change in NAFs gene expression profile influenced by MCF10A. CAFs responded to the presence of both epithelial cells inducing genes implicated in cell proliferation. Our data indicate that interactions between breast fibroblasts and basal epithelial cells resulted in alterations in the genomic profiles of both cell types which may help to clarify some aspects of this heterotypic signaling. (C) 2009 UICC
Resumo:
Gene silencing may occur in breast cancer samples from patients presenting with occult metastatic cells in the bone marrow and one mechanism regulating gene suppression is heterochromatin formation. We have studied whether members of the heterochromatin protein 1 family Hp1(Hs alpha), Hp1(Hs beta) and Hp1(Hs gamma) which take part in chromatin packaging and gene expression regulation, were differentially expressed in tumors from patients with and without occult metastatic cells in their bone marrow. Tumor samples and bone marrow aspirates were obtained from 37 breast cancer patients. Median age was 63 years and 68% of the patients presented with clinical stage I/II disease. Presence of occult metastatic cells in bone marrow was detected through keratin-19 expression by nested RT-PCR in samples from 20 patients (54.1%). The presence of occult metastatic cells in bone marrow was not associated with node involvement, histological grade, estrogen receptor and ERBB2 immunoexpression. Relative gene expression of HP1(Hs alpha), HP1(Hs beta) and HP1(Hs gamma) was determined by real-time RT-PCR and did not vary according to the presence of occult metastatic cells in bone marrow. In addition, the combined expression of these three transcripts could not be used to classify samples according to the presence of bone marrow micrometastasis. Our work indicates that regulation of heterochromatin formation through HP1 family members may not be the sole mechanism implicated in the metastatic process to the bone marrow. (Int J Biol Markers 2008; 23: 219-24)
Resumo:
Collision tumors consist of two independent but coexisting tumors. This uncommon situation might be easily mistaken for a composite tumor where one histogenetic event originates from two apparently distinct neoplasms. Colorectal collisions are particularly unusual; here, we report the exceedingly rare case of a 61-year-old man with malignant melanoma and adenocarcinoma colliding in the rectum. Collision tumors have an idiopathic pathophysiology and in fact ""accidental meeting"" is accepted by many authors. This article discusses the concepts about cancer development, which are overlooked by this hypothesis, another theory to explain that this rare occurrence involves microenvironment changes.
Resumo:
Carcinoma ex-pleomorphic adenoma (CXPA) is an aggressive salivary gland malignancy, usually derived from a long-standing or a recurrent benign tumor, the pleomorphic adenoma (PA). In the context of dynamic reciprocity, changes in the composition and structure of extracellular matrix proteins and cell surface receptors have been frequently associated with dysfunctional adhesion and invasive behavior of tumor cells. It is not fully understood if these changes are involved in the conversion of PA to CXPA. In this study, different progression stages of CXPA were investigated regarding the expression of the major extracellular matrix proteins, collagen type I, and of E-cadherin and beta-catenin, the components of adherens junctions. By immunohistochemical analysis, we have demonstrated that direct contact of tumor cells with fibrillar type I collagen, particularly near the invasive front and in invasive areas prevailing small nests of CXPA cells, could be associated with reduced expression of the E-cadherin and beta-catenin adhesion molecules and with invasive behavior of epithelial; but not of CXPA with myoepithelial component. Our results also suggested that this association could depend on the organization of collagen molecules, being prevented by high-order polymeric structures. These findings could implicate the local microenvironment in the transition from the premalignant PA to invasive CXPA.
Resumo:
Background. A 33-year-old woman presented to an endocrinology clinic with a 5-year history of secondary amenorrhea. 2 years before presentation, she had noticed progressively worsening signs of virilization. Investigations. Measurement of levels of serum free and total testosterone, androstenedione, dehydroepiandrosterone sulfate and gonadotropins; transvaginal ultrasonography, abdominal and pelvic MRI and (18)F-fluorodeoxyglucose PET imaging. Diagnosis. Virilization secondary to an ovarian Leydig cell tumor. Management. The patient underwent a left salpingo-oophorectomy that confirmed the diagnosis of a unilateral Leydig cell tumor. Complete normalization of androgens and gonadotropin levels was achieved after surgery.
Resumo:
Epithelioid trophoblastic tumor is a distinctive but rare trophoblastic tumor. It derives from intermediate trophoblastic cells of the chorion laeve and is usually associated with a previous gestational event. We report the case of a patient who had undergone dilatation and curettage for a missed miscarriage. Three months later gestational trophoblastic disease was suspected because of persistent vaginal bleeding and high levels of beta-human chorionic gonadotropin (beta-hCG). Transvaginal ultrasound revealed irregular echolucent lacunae within the myometrium, some of them filled with low-resistance, turbulent blood flow on Doppler examination, emphasizing the diagnosis of gestational trophoblastic disease. The patient was treated with 12 courses of multiagent chemotherapy. After a 2-year remission, a low rise in serum beta-hCG was observed. Transvaginal ultrasound revealed a well-circumscribed echogenic lesion with a diameter of 1.8 cm in the uterine fundus, with no detectable blood flow on Doppler imaging. A diagnosis of tumor of intermediate trophoblastic cells was suspected and total hysterectomy was performed. On pathological examination, the histological and immunohistochemical features were characteristic of epithelioid trophoblastic tumor. Most reported cases of epithelioid trophoblastic tumor have solitary nodules with sharp margins, which is consistent with our ultrasound findings. Ultrasound may be helpful in differentiating epithelioid trophoblastic tumor from placental-site trophoblastic tumor, another tumor of intermediate trophoblastic cells, which shows infiltrative growth insinuating between muscle fibers. Copyright (C) 2010 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Substantial experimental evidence indicates that PAWR gene (PKC apoptosis WT1 regulator; also named PAR-4, prostate apoptosis response-4) is a central player in cancer cell survival and a potential target for cancer-selective targeted therapeutics. However, little is known about the role of PAR-4 in breast cancer. We investigated the possible role of PAR-4 expression in breast cancer. IHC results on tissue microarrays containing 1,161 primary breast tumor samples showed that 57% (571/995) of analyzable cases were negative for PAR-4 nuclear staining. Down-regulation of nuclear PAR-4 protein expression predicted a poor prognosis for breast cancer patients (OS; P=0.041, log-rank test). PAR-4 down-regulation also correlates with poor survival in the group of patients with luminal A subtype breast cancer (P=0.028). Additionally, in this large series of breast cancer patients, we show that ERBB2/HER2, EGFR and pAKT protein expression are significantly associated with shorter disease-free survival and overall survival, but the prognosis was even worse for HER2-positive, EGFR-positive or pAKT-positive breast cancer patients with tumors negative for nuclear PAR-4 expression. Furthermore, using three-dimensional (3D) cell culture we provide preliminary results showing that PAR-4 is highly expressed in the MCF10A cells inside the acini structure, suggesting that PAR-4 might have a role in the lumen acini formation. Taken together, our results provide, for the first time, evidence that PAR-4 may have a role in the process of the mammary eland morphogenesis and its functional inactivation is associated with tumor aggressive phenotype and might represent an additional prognostic and predictive marker for breast cancer.
Resumo:
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. Discovered on GIST-1 (DOG1) is a recently described protein expressed in GISTs irrespective of mutation status. The aim of this study was to investigate the immunohistochemical expression of DOG1 using 2 different monoclonal antibodies (DOG1.1 and the commercially available K9 antibody) in 668 GIST cases and to compare the results with the expression of KIT. DOG1 and KIT expression also were studied in most human normal tissues and several nonmesenchymal and mesenchymal tumors other than GIST. KIT was expressed in 643 (96.3%) GISTs. DOG1.1 and K9 were positive in 538 (80.5%) and 642 (96.1%) GIST cases, respectively. In 25 (3.7%) KIT-negative GIST cases, DOG1 was expressed in 5 (20.0%) and 19 (76.0%) using DOG1.1 and K9 antibodies, respectively. Only 0.9% of GISTs were negative for KIT, DOG1.1, and K9. Most normal human tissues did not reveal KIT and DOG1 expression. DOG1.1 was positive in only 2 of 57 synovial sarcomas and 1 of 61 soft tissue leiomyosarcomas. K9 was positive in 5 of 57 synovial sarcomas, 1 of 14 angiosarcomas, 1 of 61 soft tissue leiomyosarcomas, 3 of 4 adenoid cystic carcinomas of the head and neck, and in myoepithelial cells of 9 of 11. broadenomas of the breast. In conclusion, the commercially available K9 is of great utility for the diagnosis of most KIT-negative GISTs, and the combination of both KIT and K9 antibody in a panel of immunohistochemistry can define the diagnosis of GIST in more than 99% of cases.