924 resultados para Tsallis entropy
Resumo:
This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001
Resumo:
In this paper we propose a fast adaptive Importance Sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First we estimate the minimum Cross-Entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level; finally, the tilting parameter just found is used to estimate the overflow probability of interest. We recognize three distinct properties of the method which together explain why the method works well; we conjecture that they hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.
Resumo:
The concept of entropy rate is well defined in dynamical systems theory but is impossible to apply it directly to finite real world data sets. With this in mind, Pincus developed Approximate Entropy (ApEn), which uses ideas from Eckmann and Ruelle to create a regularity measure based on entropy rate that can be used to determine the influence of chaotic behaviour in a real world signal. However, this measure was found not to be robust and so an improved formulation known as the Sample Entropy (SampEn) was created by Richman and Moorman to address these issues. We have developed a new, related, regularity measure which is not based on the theory provided by Eckmann and Ruelle and proves a more well-behaved measure of complexity than the previous measures whilst still retaining a low computational cost.
Resumo:
There has been much recent research into extracting useful diagnostic features from the electrocardiogram with numerous studies claiming impressive results. However, the robustness and consistency of the methods employed in these studies is rarely, if ever, mentioned. Hence, we propose two new methods; a biologically motivated time series derived from consecutive P-wave durations, and a mathematically motivated regularity measure. We investigate the robustness of these two methods when compared with current corresponding methods. We find that the new time series performs admirably as a compliment to the current method and the new regularity measure consistently outperforms the current measure in numerous tests on real and synthetic data.
Resumo:
In this study, a new entropy measure known as kernel entropy (KerEnt), which quantifies the irregularity in a series, was applied to nocturnal oxygen saturation (SaO 2) recordings. A total of 96 subjects suspected of suffering from sleep apnea-hypopnea syndrome (SAHS) took part in the study: 32 SAHS-negative and 64 SAHS-positive subjects. Their SaO 2 signals were separately processed by means of KerEnt. Our results show that a higher degree of irregularity is associated to SAHS-positive subjects. Statistical analysis revealed significant differences between the KerEnt values of SAHS-negative and SAHS-positive groups. The diagnostic utility of this parameter was studied by means of receiver operating characteristic (ROC) analysis. A classification accuracy of 81.25% (81.25% sensitivity and 81.25% specificity) was achieved. Repeated apneas during sleep increase irregularity in SaO 2 data. This effect can be measured by KerEnt in order to detect SAHS. This non-linear measure can provide useful information for the development of alternative diagnostic techniques in order to reduce the demand for conventional polysomnography (PSG). © 2011 IEEE.
Resumo:
We propose a family of attributed graph kernels based on mutual information measures, i.e., the Jensen-Tsallis (JT) q-differences (for q ∈ [1,2]) between probability distributions over the graphs. To this end, we first assign a probability to each vertex of the graph through a continuous-time quantum walk (CTQW). We then adopt the tree-index approach [1] to strengthen the original vertex labels, and we show how the CTQW can induce a probability distribution over these strengthened labels. We show that our JT kernel (for q = 1) overcomes the shortcoming of discarding non-isomorphic substructures arising in the R-convolution kernels. Moreover, we prove that the proposed JT kernels generalize the Jensen-Shannon graph kernel [2] (for q = 1) and the classical subtree kernel [3] (for q = 2), respectively. Experimental evaluations demonstrate the effectiveness and efficiency of the JT kernels.
Resumo:
2000 Mathematics Subject Classification: 62P10, 92D10, 92D30, 94A17, 62L10.
Resumo:
2010 Mathematics Subject Classification: 94A17.
Resumo:
In this paper, we focus on the design of bivariate EDAs for discrete optimization problems and propose a new approach named HSMIEC. While the current EDAs require much time in the statistical learning process as the relationships among the variables are too complicated, we employ the Selfish gene theory (SG) in this approach, as well as a Mutual Information and Entropy based Cluster (MIEC) model is also set to optimize the probability distribution of the virtual population. This model uses a hybrid sampling method by considering both the clustering accuracy and clustering diversity and an incremental learning and resample scheme is also set to optimize the parameters of the correlations of the variables. Compared with several benchmark problems, our experimental results demonstrate that HSMIEC often performs better than some other EDAs, such as BMDA, COMIT, MIMIC and ECGA. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A dolgozatban a döntéselméletben fontos szerepet játszó páros összehasonlítás mátrix prioritásvektorának meghatározására új megközelítést alkalmazunk. Az A páros összehasonlítás mátrix és a prioritásvektor által definiált B konzisztens mátrix közötti eltérést a Kullback-Leibler relatív entrópia-függvény segítségével mérjük. Ezen eltérés minimalizálása teljesen kitöltött mátrix esetében konvex programozási feladathoz vezet, nem teljesen kitöltött mátrix esetében pedig egy fixpont problémához. Az eltérésfüggvényt minimalizáló prioritásvektor egyben azzal a tulajdonsággal is rendelkezik, hogy az A mátrix elemeinek összege és a B mátrix elemeinek összege közötti különbség éppen az eltérésfüggvény minimumának az n-szerese, ahol n a feladat mérete. Így az eltérésfüggvény minimumának értéke két szempontból is lehet alkalmas az A mátrix inkonzisztenciájának a mérésére. _____ In this paper we apply a new approach for determining a priority vector for the pairwise comparison matrix which plays an important role in Decision Theory. The divergence between the pairwise comparison matrix A and the consistent matrix B defined by the priority vector is measured with the help of the Kullback-Leibler relative entropy function. The minimization of this divergence leads to a convex program in case of a complete matrix, leads to a fixed-point problem in case of an incomplete matrix. The priority vector minimizing the divergence also has the property that the difference of the sums of elements of the matrix A and the matrix B is n times the minimum of the divergence function where n is the dimension of the problem. Thus we developed two reasons for considering the value of the minimum of the divergence as a measure of inconsistency of the matrix A.
Resumo:
Concept evaluation at the early phase of product development plays a crucial role in new product development. It determines the direction of the subsequent design activities. However, the evaluation information at this stage mainly comes from experts' judgments, which is subjective and imprecise. How to manage the subjectivity to reduce the evaluation bias is a big challenge in design concept evaluation. This paper proposes a comprehensive evaluation method which combines information entropy theory and rough number. Rough number is first presented to aggregate individual judgments and priorities and to manipulate the vagueness under a group decision-making environment. A rough number based information entropy method is proposed to determine the relative weights of evaluation criteria. The composite performance values based on rough number are then calculated to rank the candidate design concepts. The results from a practical case study on the concept evaluation of an industrial robot design show that the integrated evaluation model can effectively strengthen the objectivity across the decision-making processes.
Resumo:
The problem addressed concerns the determination of the average numberof successive attempts of guessing a word of a certain length consisting of letters withgiven probabilities of occurrence. Both first- and second-order approximations to a naturallanguage are considered. The guessing strategy used is guessing words in decreasing orderof probability. When word and alphabet sizes are large, approximations are necessary inorder to estimate the number of guesses. Several kinds of approximations are discusseddemonstrating moderate requirements regarding both memory and central processing unit(CPU) time. When considering realistic sizes of alphabets and words (100), the numberof guesses can be estimated within minutes with reasonable accuracy (a few percent) andmay therefore constitute an alternative to, e.g., various entropy expressions. For manyprobability distributions, the density of the logarithm of probability products is close to anormal distribution. For those cases, it is possible to derive an analytical expression for theaverage number of guesses. The proportion of guesses needed on average compared to thetotal number decreases almost exponentially with the word length. The leading term in anasymptotic expansion can be used to estimate the number of guesses for large word lengths.Comparisons with analytical lower bounds and entropy expressions are also provided.