991 resultados para Transport-equation
Resumo:
Computational simulations of the title reaction are presented, covering a temperature range from 300 to 2000 K. At lower temperatures we find that initial formation of the cyclopropene complex by addition of methylene to acetylene is irreversible, as is the stabilisation process via collisional energy transfer. Product branching between propargyl and the stable isomers is predicted at 300 K as a function of pressure for the first time. At intermediate temperatures (1200 K), complex temporal evolution involving multiple steady states begins to emerge. At high temperatures (2000 K) the timescale for subsequent unimolecular decay of thermalized intermediates begins to impinge on the timescale for reaction of methylene, such that the rate of formation of propargyl product does not admit a simple analysis in terms of a single time-independent rate constant until the methylene supply becomes depleted. Likewise, at the elevated temperatures the thermalized intermediates cannot be regarded as irreversible product channels. Our solution algorithm involves spectral propagation of a symmetrised version of the discretized master equation matrix, and is implemented in a high precision environment which makes hitherto unachievable low-temperature modelling a reality.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We apply the quantum trajectory method to current noise in resonant tunneling devices. The results from dynamical simulation are compared with those from unconditional master equation approach. We show that the stochastic Schrodinger equation approach is useful in modeling the dynamical processes in mesoscopic electronic systems.
Resumo:
Contaminant transport in coastal aquifers is complicated partly due to the conditions at the seaward boundary including seawater intrusion and tidal variations of sea level. Their inclusion in modelling this system will be computationally expensive. Therefore, it will be instructive to investigate the consequence of simplifying the seaward boundary condition by neglecting the seawater density and tidal variations in numerical predictions of contaminant transport in this zone. This paper presents a comparison of numerical predictions for a simplified seaward boundary condition with experimental results for a corresponding realistic one including a saltwater interface and tidal variations. Different densities for contaminants are considered. The comparison suggests that the neglect of the seawater intrusion and tidal variations does not affect noticeably the overall migration rate of the plume before it reaches the saltwater interface. However, numerical prediction shows that a more dense contaminant travels further seaward and part of the solute mass exits under the sea if the seawater density is not included. This is not consistent with the experimental result, which shows that the contaminant travels upwards to the shoreline along the saltwater interface. Neglect of seawater density, therefore, will result in an underestimation of the exit rate of solute mass around the coastline and fictitious migration paths under the seabed. For a less dense contaminant, neglect of seawater density has little effect on numerical prediction of migration paths. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The Dubinin-Radushkevich (DR) equation is widely used for description of adsorption in microporous materials, especially those of a carbonaceous origin. The equation has a semi-empirical origin and is based on the assumptions of a change in the potential energy between the gas and adsorbed phases and a characteristic energy of a given solid. This equation yields a macroscopic behaviour of adsorption loading for a given pressure. In this paper, we apply a theory developed in our group to investigate the underlying mechanism of adsorption as an alternative to the macroscopic description using the DR equation. Using this approach, we are able to establish a detailed picture of the adsorption in the whole range of the micropore system. This is different from the DR equation, which provides an overall description of the process. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.
Resumo:
Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.
Resumo:
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 mum nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 mum nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 mum) significantly inhibited basal and insulin-stimulated glucose uptake in adi. pocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 muM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 muM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degreesC. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.
Resumo:
We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-LI adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA/AM.. While the ionophores A23187 or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degreesC, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/cahnodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.
Resumo:
A constructive version of a theorem of Thue is used to provide representations of certain integers as x(2) - Dy-2, where D = 2, 3, 5, 6, 7.
Resumo:
Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.