803 resultados para Transformation kinetics
Resumo:
Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.
Resumo:
Myelodysplastic syndromes (MDS) with del(5q) are considered to have a benign course of the disease. In order to address the issue of the propensity of those patients to progress to acute myeloid leukemia (AML), data on 381 untreated patients with MDS and del(5q) characterized by low or intermediate I International Prognostic Scoring System (IPSS) risk score were collected from nine centers and registries. Median survival of the entire group was 74 months. Transfusion-dependent patients had a median survival of 44 months vs 97 months for transfusion-independent patients (P<0.0001). Transfusion need at diagnosis was the most important patient characteristic for survival. Of the 381 patients, 48 (12.6%) progressed to AML. The cumulative progression rate calculated using the Kaplan-Meier method was 4.9% at 2 years and 17.6% at 5 years. Factors associated with the risk of AML transformation were high-risk World Health Organization adapted Prognostic Scoring System (WPSS) score, marrow blast count >5% and red-cell transfusion dependency at diagnosis. In conclusion, patients with MDS and del(5q) are facing a considerable risk of AML transformation. More detailed cytogenetic and molecular studies may help to identify the patients at risk of progression.
Resumo:
Humoral factors play an important role in the control of exercise hyperpnea. The role of neuromechanical ventilatory factors, however, is still being investigated. We tested the hypothesis that the afferents of the thoracopulmonary system, and consequently of the neuromechanical ventilatory loop, have an influence on the kinetics of oxygen consumption (VO2), carbon dioxide output (VCO2), and ventilation (VE) during moderate intensity exercise. We did this by comparing the ventilatory time constants (tau) of exercise with and without an inspiratory load. Fourteen healthy, trained men (age 22.6 +/- 3.2 yr) performed a continuous incremental cycle exercise test to determine maximal oxygen uptake (VO2max = 55.2 +/- 5.8 ml x min(-1) x kg(-1)). On another day, after unloaded warm-up they performed randomized constant-load tests at 40% of their VO2max for 8 min, one with and the other without an inspiratory threshold load of 15 cmH2O. Ventilatory variables were obtained breath by breath. Phase 2 ventilatory kinetics (VO2, VCO2, and VE) could be described in all cases by a monoexponential function. The bootstrap method revealed small coefficients of variation for the model parameters, indicating an accurate determination for all parameters. Paired Student's t-tests showed that the addition of the inspiratory resistance significantly increased the tau during phase 2 of VO2 (43.1 +/- 8.6 vs. 60.9 +/- 14.1 s; P < 0.001), VCO2 (60.3 +/- 17.6 vs. 84.5 +/- 18.1 s; P < 0.001) and VE (59.4 +/- 16.1 vs. 85.9 +/- 17.1 s; P < 0.001). The average rise in tau was 41.3% for VO2, 40.1% for VCO2, and 44.6% for VE. The tau changes indicated that neuromechanical ventilatory factors play a role in the ventilatory response to moderate exercise.
Resumo:
The purpose of this study was to compare O(2) uptake ((.)VO(2)) and muscle electromyography activity kinetics during moderate and severe exercise to test the hypothesis of progressive recruitment of fast-twitch fibers in the explanation of the VO(2) slow component. After an incremental test to exhaustion, 7 trained cyclists (mean +/- SD, 61.4 +/- 4.2 ml x min(-1) x kg(- 1)) performed several square-wave transitions for 6 min at moderate and severe intensities on a bicycle ergometer. The (.)VO(2) response and the electrical activity (i.e., median power frequency, MDF) of the quadriceps vastus lateralis and vastus medialis of both lower limbs were measured continuously during exercise. After 2 to 3 min of exercise onset, MDF values increased similarly during moderate and severe exercise for almost all muscles whereas a (.)VO(2) slow component occurred during severe exercise. There was no relationship between the increase of MDF values and the magnitude of the (.)VO(2) slow component during the severe exercise. These results suggest that the origin of the slow component may not be due to the progressive recruitment of fast-twitch fibers.
Resumo:
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.
Resumo:
The purpose of this study was to test the hypothesis that athletes having a slower oxygen uptake ( VO(2)) kinetics would benefit more, in terms of time spent near VO(2max), from an increase in the intensity of an intermittent running training (IT). After determination of VO(2max), vVO(2max) (i.e. the minimal velocity associated with VO(2max) in an incremental test) and the time to exhaustion sustained at vVO(2max) ( T(lim)), seven well-trained triathletes performed in random order two IT sessions. The two IT comprised 30-s work intervals at either 100% (IT(100%)) or 105% (IT(105%)) of vVO(2max) with 30-s recovery intervals at 50% of vVO(2max) between each repeat. The parameters of the VO(2) kinetics (td(1), tau(1), A(1), td(2), tau(2), A(2), i.e. time delay, time constant and amplitude of the primary phase and slow component, respectively) during the T(lim) test were modelled with two exponential functions. The highest VO(2) reached was significantly lower ( P<0.01) in IT(100%) run at 19.8 (0.9) km(.)h(-1) [66.2 (4.6) ml(.)min(-1.)kg(-1)] than in IT(105%) run at 20.8 (1.0) km(.)h(-1) [71.1 (4.9) ml(.)min(-1.)kg(-1)] or in the incremental test [71.2 (4.2) ml(.)min(-1.)kg(-1)]. The time sustained above 90% of VO(2max) in IT(105%) [338 (149) s] was significantly higher ( P<0.05) than in IT(100%) [168 (131) s]. The average T(lim) was 244 (39) s, tau(1) was 15.8 (5.9) s and td(2) was 96 (13) s. tau(1) was correlated with the difference in time spent above 90% of VO(2max) ( r=0.91; P<0.01) between IT(105%) and IT(100%). In conclusion, athletes with a slower VO(2) kinetics in a vVO(2max) constant-velocity test benefited more from the 5% rise of IT work intensity, exercising for longer above 90% of VO(2max) when the IT intensity was increased from 100 to 105% of vVO(2max).
Resumo:
BACKGROUND: The aim of this retrospective and monocentric study was to describe the magnetic resonance cholangiography (MRC) features of biliary abnormalities related to extrahepatic obstruction of the portal vein (EHOPV). METHODS: From September 2001 to May 2003, MRC was performed in 10 consecutive patients who had a portal thrombosis. RESULTS: Biliary ductal pathology was demonstrated via MRC in nine patients. It consisted of stenoses, ductal narrowing or irregularities involving the common bile duct for three patients with extrahepatic portal vein thrombosis discovered a mean of 1.5 years ago, or involving both right and left intrahepatic bile ducts and common bile duct for six patients with extrahepatic portal vein thrombosis discovered a mean of 16.2 years ago. Dilation of intrahepatic bile ducts was seen for seven patients, four of them having cholestasis. For three patients with symptomatic cholestasis, direct cholangiography (DC) was performed and showed the same findings as MRC which nevertheless overestimated the degree of bile duct stenosis. CONCLUSIONS: MRC seems to constitute an accurate tool to investigate noninvasively patients with portal biliopathy.
Resumo:
The goals of the present study were to evaluate the kinetics of blood parasitism by examination of fresh blood, blood culture (BC) and PCR assays and their correlation with heart parasitism during two years of infection in Beagle dogs inoculated with the Be-78, Y and ABC Trypanosoma cruzi strains. Our results showed that the parasite or its kDNA is easily detected during the acute phase in all infected animals. On the other hand, a reduced number of positive tests were verified during the chronic phase of the infection. The frequency of positive tests was correlated with T. cruzi strain. The percentage of positive BC and blood PCR performed in samples from animals inoculated with Be-78 and ABC strains were similar and significantly larger in relation to animals infected with the Y strain.Comparison of the positivity of PCR tests performed using blood and heart tissue samples obtained two years after infection showed two different patterns associated with the inoculated T. cruzi strain: (1) high PCR positivity for both blood and tissue was observed in animals infected with Be-78 or ABC strains; (2) lower and higher PCR positivity for the blood and tissue, respectively, was detected in animals infected with Y strains. These data suggest that the sensitivity of BC and blood PCR was T. cruzi strain dependent and, in contrast, the heart tissue PCR revealed higher sensitivity regardless of the parasite stock.
Resumo:
BACKGROUND: Urokinase plasminogen activator receptor (uPAR, CD87) is a widely distributed 55-kD, glycoprotein I-anchored surface receptor. On binding of its ligand uPA, it is known to increase leukocyte adhesion and traffic. Using genetically deficient mice, we explored the role of uPAR in platelet kinetics and TNF-induced platelet consumption. METHODS AND RESULTS: Anti-uPAR antibody stained platelets from normal (+/+) but not from uPAR-/- mice, as seen by fluorescence-activated cell sorter analysis. 51Cr-labeled platelets from uPAR-/- donors survived longer than those from +/+ donors when injected into a +/+ recipient. Intratracheal TNF injection induced thrombocytopenia and a platelet pulmonary localization, pronounced in +/+ but absent in uPAR-/- mice. Aprotinin, a plasmin inhibitor, decreased TNF-induced thrombocytopenia. TNF injection markedly reduced the survival and increased the pulmonary localization of 51Cr-labeled platelets from +/+ but not from uPAR-/- donors, indicating that it is the platelet uPAR that is critical for their response to TNF. As seen by electron microscopy, TNF injection increased the number of platelets and polymorphonuclear neutrophils (PMNs) in the alveolar capillaries of +/+ mice, whereas in uPAR-/- mice, platelet trapping was insignificant and PMN trapping was slightly reduced. Platelets within alveolar capillaries of TNF-injected mice were activated, as judged from their shape, and this was evident in +/+ but not in uPAR-/- mice. CONCLUSIONS: These results demonstrate for the first time the critical role of platelet uPAR for kinetics as well as for activation and endothelium adhesion associated with inflammation.