987 resultados para Toxins and antitoxins
Resumo:
The natural toxicity of cnidarians, bryozoans and tunicates in two caves was assessed using the Microtox® technique in spring and autumn. One cave was located in the Cabrera Archipelago (Balearic Islands) and the other in the Medes Islands (Catalan littoral). The organisms analysed were good representatives of the coverage of each Phylum in the communities; however, these Phyla are less abundant than sponges which are the dominant group in these caves. Seventy-one percent of the species of cnidarians and bryozoans analysed were toxic in one of the caves, communities or seasons, which indicates the relevance of bioactive species in these groups. The tunicate Lissoclinum perforatum was the most toxic species. Although all three Phyla had some highly toxic species, a common pattern that related the caves, communities and seasons was not found. Seasonal variation of toxicity in cnidarians and bryozoans was higher in the Cabrera than in the Medes cave. Moreover, variation in toxicity either between communities or between seasons was a common trait for most cnidarians and bryozoans, whereas tunicates remained toxic throughout communities and seasons.
Resumo:
The adipose tissue has pleiotropic functions far beyond the mere storage of energy, and it secretes a number of hormones and cytokines, called adipokines, which have biological effects that impact heath and disease. Adipokines are markedly elevated in the plasma of uremic patients, mainly due to decreased renal excretion. They have pluripotent signaling effects on inflammation/oxidative stress (leptin, adiponectin, resistin), protein-energy wasting (leptin, adiponectin), insulin signaling (adiponectin, leptin, visfatin), endothelial dysfunction (visfatin), and vascular damage (adiponectin, leptin, resistin), which are prevalent in uremic patients. Obesity superimposed to uremia may further aggravate hyperadipokinemia, with the exception of adiponectinemia, which is mitigated by adiposity. Among adipokines and until more data become available, only leptin may be considered as a full uremic toxin owing to adverse effects on protein-energy wasting, cardiovascular damage, inflammation, and the immune system, which have been documented both clinically and experimentally. Resistin and visfatin display some features of uremic toxins, but more data are needed to consider these adipokines as true uremic toxins. In contrast, high levels of adiponectin and chemerin seen in uremia appear to be beneficial. Further research is needed to investigate whether selective removal of leptin, resistin, and visfatin and increments of adiponectin and chemerin levels may have clinical relevance in uremic patients.
Resumo:
The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.
Resumo:
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.
Resumo:
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion.
Resumo:
Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.
Resumo:
BACKGROUND & AIMS: Clostridium difficile-associated disease (CDAD) is the leading cause of nosocomial diarrhea in the United States. C difficile toxins TcdA and TcdB breach the intestinal barrier and trigger mucosal inflammation and intestinal damage. The inflammasome is an intracellular danger sensor of the innate immune system. In the present study, we hypothesize that TcdA and TcdB trigger inflammasome-dependent interleukin (IL)-1beta production, which contributes to the pathogenesis of CDAD. METHODS: Macrophages exposed to TcdA and TcdB were assessed for IL-1beta production, an indication of inflammasome activation. Macrophages deficient in components of the inflammasome were also assessed. Truncated/mutated forms of TcdB were assessed for their ability to activate the inflammasome. The role of inflammasome signaling in vivo was assessed in ASC-deficient and IL-1 receptor antagonist-treated mice. RESULTS: TcdA and TcdB triggered inflammasome activation and IL-1beta secretion in macrophages and human mucosal biopsy specimens. Deletion of Nlrp3 decreased, whereas deletion of ASC completely abolished, toxin-induced IL-1beta release. TcdB-induced IL-1beta release required recognition of the full-length toxin but not its enzymatic function. In vivo, deletion of ASC significantly reduced toxin-induced inflammation and damage, an effect that was mimicked by pretreatment with the IL-1 receptor antagonist anakinra. CONCLUSIONS: TcdA and TcdB trigger IL-1beta release by activating an ASC-containing inflammasome, a response that contributes to toxin-induced inflammation and damage in vivo. Pretreating mice with the IL-1 receptor antagonist anakinra afforded the same level of protection that was observed in ASC-/- mice. These data suggest that targeting inflammasome or IL-1beta signaling may represent new therapeutic targets in the treatment of CDAD.
Resumo:
BACKGROUND: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. RESULTS: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. CONCLUSIONS: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
Resumo:
Aeromonas hydrophila is the most common Aeromonas species causing infections in human and other animals such as amphibians, reptiles, fish and crustaceans. Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Several mutant strains of A. hydrophila AH-3 were initially used to study their virulence in two animal species, Pacifastacus leniusculus (crayfish) and Tenebrio molitor larvae (mealworm). The AH-3 strains used in this study have mutations in genes involving the synthesis of flagella, LPS structures, secretion systems, and some other factors, which have been reported to be involved in A. hydrophila pathogenicity. Our study shows that the LPS (O-antigen and external core) is the most determinant A. hydrophila AH-3 virulence factor in both animals. Furthermore, we studied the immune responses of these hosts to infection of virulent or non-virulent strains of A. hydrophila AH-3. The AH-3 wild type (WT) containing the complete LPS core is highly virulent and this bacterium strongly stimulated the prophenoloxidase activating system resulting in melanization in both crayfish and mealworm. In contrast, the ΔwaaE mutant which has LPS without O-antigen and external core was non-virulent and lost ability to stimulate this system and melanization in these two animals. The high phenoloxidase activity found in WT infected crayfish appears to result from a low expression of pacifastin, a prophenoloxidase activating enzyme inhibitor, and this gene expression was not changed in the ΔwaaE mutant infected animal and consequently phenoloxidase activity was not altered as compared to non-infected animals. Therefore we show that the virulence factors of A. hydrophila are the same regardless whether an insect or a crustacean is infected and the O-antigen and external core is essential for activation of the proPO system and as virulence factors for this bacterium.
Resumo:
There is growing interest in the association of radiotherapy and immunotherapy for the treatment of solid tumors. Here, we report an extremely effective combination of local irradiation (IR) and Shiga Toxin B (STxB)-based human papillomavirus (HPV) vaccination for the treatment of HPV-associated head and neck squamous cell carcinoma (HNSCC). The efficacy of the irradiation and vaccine association was tested using a model of HNSCC obtained by grafting TC-1/luciferase cells at a submucosal site of the inner lip of immunocompetent mice. Irradiation and the STxB-E7 vaccine acted synergistically with both single and fractionated irradiation schemes, resulting in complete tumor clearance in the majority of the treated mice. A dose threshold of 7.5 Gy was required to elicit the dramatic antitumor response. The combined treatment induced high levels of tumor-infiltrating, antigen-specific CD8(+) T cells, which were required to trigger the antitumor activity. Treatment with STxB-E7 and irradiation induced CD8(+) T-cell memory, which was sufficient to exert complete antitumor responses in both local recurrences and distant metastases. We also report for the first time that a combination therapy based on local irradiation and vaccination induces an increased pericyte coverage (as shown by αSMA and NG2 staining) and ICAM-1 expression on vessels. This was associated with enhanced intratumor vascular permeability that correlated with the antitumor response, suggesting that the combination therapy could also act through an increased accessibility for immune cells. The combination strategy proposed here offers a promising approach that could potentially be transferred into early-phase clinical trials.
Resumo:
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.
Resumo:
The product of catalytic activity of the enzyme phospholipase A2, which resembles the core unit of animal toxins, on phospholipids is a 1:1 mixture of lysolipid and fatty acid. This mixture was studied by time-resolved simultaneous small- and wide angle x-ray diffraction over the temperature range from 23 to 53.5ºC. An unusually large lamellar structure was observed, with d = 11 nm, contradicting the complex functional dimer model between lysolipid and fatty acid. It can be explained by formation of a "double-bilayer", a new phase consisting of two different bilayers, one formed by lysophospholipid and other by fatty acid, bound together by head group interactions. Its strucutre was confirmed by simulations of the X-ray scattering pattern.
Resumo:
Nedbrytning av blågrönalgtoxiner med hälsobefrämjande mjölksyrebakterier Blomningar av cyanobakterier (blågrönalger) har blivit ett världsomfattande fenomen i eutrofierade vattenmiljöer. Cyanobakterier producerar toxiner, både levergifter och nervgifter, vilka utgör en hälsorisk för människan. Exponeringsrutter omfattar både dricksvatten och förorenade matvaror. Rening av dricksvatten från dessa toxiner är således av hög prioritet. Konventionella vatttenreningsprocesser är inte alltid tillräckligt effektiva mot cyanotoxiner. Därför behövs utveckling av nya effektiva biologiska metoder för vattenrening, vilka kunde komplettera de redan existerande metoderna. FM Sonja Nybom har i sin doktorsavhandling undersökt eliminering av cyanotoxiner från dricksvatten med hjälp av probioter. Probiotiska bakterier, såsom mjölksyrebakterier och bifidobakterier, finns i den naturliga tarmfloran och har även visats ha gynnsamma effekter för människans hälsa. I avhandlingen visades flera olika stammar av probiotiska mjölksyrebakterier och bifidobakterier effektivt eliminera cyanotoxiner, såsom levergiftiga microcystiner, från vatten. Elimineringen undersöktes under olika omständigheter och visades vara beroende av bland annat vattentemperatur, pH, celldensitet och närvaro av kolkälla (glukos) för bakterierna. Metaboliskt aktiva, levande bakterier krävdes för effektiv toxineliminering. En kombination av flera probiotstammar resulterade i effektivare nedbrytning av toxiner i jämförelse med enskilda bakteriestammar. Även reaktionstiden var av betydelse för effektiviteten; efter ett dygns inkubering åstadkoms nästan total nedbrytning. Sammanfattningsvis tyder resultaten på att metoder utnyttjande dessa hälsobefrämjande probiotiska bakterier kunde utvecklas till att användas vid rening av dricksvatten från cyanotoxiner samt användas som en personlig skyddsmekanism mot cyanotoxiner i mag-tarmkanalen.
Resumo:
Escherichia coli isolates from 24 sick psittacine birds were serogrouped and investigated for the presence of genes encoding the following virulence factors: attaching and effacing (eae), enteropathogenic E. coli EAF plasmid (EAF), pili associated with pyelonephritis (pap), S fimbriae (sfa), afimbrial adhesin (afa), capsule K1 (neu), curli (crl, csgA), temperature-sensitive hemagglutinin (tsh), enteroaggregative heat-stable enterotoxin-1 (astA), heat-stable enterotoxin -1 heat labile (LT) and heat stable (STa and STb) enterotoxins, Shiga-like toxins (stx1 and stx2), cytotoxic necrotizing factor 1 (cnf1), haemolysin (hly), aerobactin production (iuc) and serum resistance (iss). The results showed that the isolates belonged to 12 serogroups: O7; O15; O21; O23; O54; O64; O76; O84; O88; O128; O152 and O166. The virulence genes found were: crl in all isolates, pap in 10 isolates, iss in seven isolates, csgA in five isolates, iuc and tsh in three isolates and eae in two isolates. The combination of virulence genes revealed 11 different genotypic patterns. All strains were negative for genes encoding for EAF, EAEC, K1, sfa, afa, hly, cnf, LT, STa, STb, stx1 and stx2. Our findings showed that some E. coli isolated from psittacine birds present the same virulence factors as avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) pathotypes.
Resumo:
We describe the isolation of crotoxin, a presynaptic B-neurotoxin, as well as its subunits B (crotactine) and A (crotapotin) from lyophilized Crotalus durissus terrificus venom by a single-step preparative isoelectric focusing procedure. From 98 mg of dried venom protein 20.1 mg of crotactine and 13.1 mg of crotapotin were recovered in the first step of focalization and 4.2 mg in a second run. These values correspond to 35.7% of the total venom protein applied. Crotactine separated in the 9.3-7.0 pH range (tubes 1-6) and crotapotin in the 1.8-2.8 pH range (tubes 15-19) and both were homogeneous by SDS-PAGE and N-terminal amino acid analysis. Crotactine, a 12-kDa protein, presented hemolytic and phospholipase A2 activity. Thus, using isoelectric focusing we simultaneously purified both toxins in high yields. This method can be used as an alternative for the purification and characterization of proteins from other snake venoms under conditions in which biological activity is retained