898 resultados para Total-energy Calculations
Resumo:
Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.
Resumo:
OBJECTIVE: To investigate the relationships between diet composition, body composition, and macronutrient oxidation at rest in obese and non-obese children. DESIGN: Cross-sectional study on fat intake, adiposity and postabsorptive macronutrients oxidation rates. SUBJECTS: 82 prepubertal (age: 9.1 +/- 1.1 y) children, 30 obese (FM = 32.6 +/- 6.1%) and 52 non-obese (FM = 15.6 +/- 5.1%). MEASUREMENTS: Subcutaneous skinfold thickness for body composition, diet history for energy and nutrient intake, indirect calorimetry for resting metabolic rate (RMR) and RQ measurement. RESULTS: Energy intake (EI) was comparable in obese and non-obese children. Adjusted for RMR by ANCOVA, using RMR as the covariate, EI was significantly lower in obese than in non-obese children indicating either a blunted physical activity or a systematic underestimation of EI. Protein and carbohydrate intakes expressed as a percentage of total energy intake (%EI) were not significantly different in the two groups. Lipid intake (%EI) was slightly but significantly higher in the obese than in the non-obese group either unadjusted or adjusted for RMR by ANCOVA. The postabsorptive RQ was significantly lower in obese than in non-obese children. In the total group, %FM was weakly but significantly correlated to lipid intake (%EI). CONCLUSION: Obese prepubertal children have a higher relative fat intake than non-obese children and their FM is associated with this factor. The lower postabsorptive RQ of obese children may indicate a compensatory mechanism to achieve fat equilibrium by enhanced fat oxidation.
Resumo:
SUMMARY : The traditional medical advice for pregnant women has been to reduce their physical activity (PA) levels. The advice was based on concerns that exercise could affect pregnancy outcomes by increasing core body temperature, by increasing the risk of maternal musculoskeletal injury and by altering the transplacental transport of oxygen and nutrients to maternal skeletal muscle rather than to the developing foetus. In the meantime, several studies have provided new information on adaptation of the pregnant woman and her foetus to moderate PA. New investigations have shown no adverse maternal or neonatal outcomes, abnormal foetal growth, increase in early pregnancy loss, or late pregnancy complications. Moreover, enrolment in moderate PA has proven to result in marked health benefits including improved maternal cardiovascular function, reduction of excessive weight gain and fat retention, less complicated labour, improved foetal stress tolerance and neurobehavioral maturation. In view of the beneficial effects, current recommendations encourage healthy pregnant women to engage in 30 minutes of moderate PA on most, if not all, days of the week. This thesis work addressed several questions. Firstly, it examined whether compliance with the recommended levels of PA during pregnancy results in better preparedness for the sudden physical exertion of labour and delivery. Secondly, it measured PA during pregnancy as compared to postpartum. Lastly, it assessed the influence of pre-pregnancy body mass index on gestational resting metabolic rate. Data collection was conducted on healthy women living in Switzerland during the third trimester of pregnancy and postpartum. Total and activity energy expenditure was assessed through 24-hour heart rate and accelerations recordings, and cardiovascular fitness through an individual step-test. Information related to pregnancy, labour and delivery was collected from medical records. The results indicate that a minimum 30 min of moderate PA per day during pregnancy are associated with better cardiovascular fitness and lower risk of operative delivery with no negative effects on maternal and foetal conditions (study 1). Despite these benefits, a substantial proportion of pregnant women (39%) living in Switzerland do not meet the PA recommendations. The decrease in activity related energy expenditure during pregnancy compared to postpartum was measured to be around 100 kcal/day (~13%), whereas the total energy expenditure was found to increase by 300 kcal/day (study 2). Thus, the energy cost of late pregnancy in Switzerland corresponds to 200 kca/day. These findings are based on average values of the study group. It should be noted, however, that large variations in individual energy expenditure may occur depending on the pre-pregnancy body mass index (study 3). When adjusted to body weight, gestational resting metabolic rate is significantly lower among women of high pre-pregnancy body mass index compared to women of normal or low pre-pregnancy body mass index. This can be explained by the fact that resting metabolic rate is primarily a function of fat-free mass, and when expressed per kg body weight, it decreases as the percentage of body fat increases. If energy intake is not modified appropriately in order to match lower energy cost per kg body weight in overweight and obese women it will result in positive energy balance, thus contributing to the current trend towards increasing adiposity in affluent society. The results of these studies go beyond the current state of knowledge on PA and pregnancy (study 4) and provide valid evidence to guide clinical practice. In view of the current epidemic of sedentary behaviour and obesity related pathology, the findings contribute new and reliable information to public health policies regarding the effects of PA in pregnancy, an important period of life for both mother and infant.
Resumo:
More than one hundred years ago the "protein hypothesis" of the pathogenesis of atherosclerosis and its association with cardiovascular disease was put forward on the basis of animal experiments; however, it has so far never been verified in humans. This theory was soon replaced by the "lipid hypothesis", which was confirmed in humans as of 1994. Epidemiological ecological studies in the 1960 s showed significant associations between dietary animal protein and mortality from cardiovascular disease. However, animal protein intake was also significantly correlated with saturated fatty acid and cholesterol intake. In the last decades two prospective cohort studies demonstrated a decreased cardiovascular risk in women during high- versus low-protein intake when adjusting for other dietary factors (e. g., saturated fats) and other cardiovascular risk factors. A direct cholesterol lowering effect of proteins has not been shown. Despite earlier research indicating that soy protein has cardioprotective effects as compared to other proteins, these observations have not been confirmed by randomized placebo-controlled trials. However, most experts recommend the consumption of foods rich in plant proteins as alternatives to meat and dairy products rich in saturated fat and containing cholesterol. There are no scientific arguments to increase the daily protein intake to more than 20 % of total energy intake as recommended by the guidelines, in order to improve cardiovascular health.
Resumo:
The relative importance of the usual diet in serum phospholipids in subjects with cystic fibrosis (CF) has been poorly studied. To compare the fatty acid profile in serum phospholipids from adult CF subjects with that of healthy subjects, and determine the role of the normal diet in this profile, we studied thirty-seven adult CF subjects with stable pulmonary disease and thirty-seven healthy controls matched for age, sex and nutritional status. A dietary questionnaire was obtained, anthropometric data were recorded, and the fatty acid profile measured by GLC. Compared with the controls, the percentages of myristic, palmitoleic and stearic acids and total MUFA were significantly higher in the CF group, and DHA, linoleic acid, total PUFA and n-6 fatty acids were significantly lower in the CF group. The CF subjects with worse pulmonary function and with pancreatic insufficiency had significantly lower levels of linoleic and n-6 fatty acids. The total energy intake was significantly higher in the CF subjects, although the energy distribution in the CF subjects and the controls was not different for the carbohydrates, lipids and proteins. No differences were detected in fat intake for MUFA (51 (SD 4) v. 52 (SD 4) %) or saturated fatty acids (33.5 (SD 5) v. 31.2 (SD 3.8) %), but the PUFA were slightly lower in the CF subjects (15.4 (SD 4.5) v. 17.4 (SD 4.2) %; P=0.02). The usual dietary intake of fatty acids by adult CF subjects does not appear to explain the difference in the fatty acid profile compared with controls. This suggests an abnormal fatty acid metabolism in CF subjects.
Resumo:
BACKGROUND Earlier analyses within the EPIC study showed that dietary fibre intake was inversely associated with colorectal cancer risk, but results from some large cohort studies do not support this finding. We explored whether the association remained after longer follow-up with a near threefold increase in colorectal cancer cases, and if the association varied by gender and tumour location. METHODOLOGY/PRINCIPAL FINDINGS After a mean follow-up of 11.0 years, 4,517 incident cases of colorectal cancer were documented. Total, cereal, fruit, and vegetable fibre intakes were estimated from dietary questionnaires at baseline. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models stratified by age, sex, and centre, and adjusted for total energy intake, body mass index, physical activity, smoking, education, menopausal status, hormone replacement therapy, oral contraceptive use, and intakes of alcohol, folate, red and processed meats, and calcium. After multivariable adjustments, total dietary fibre was inversely associated with colorectal cancer (HR per 10 g/day increase in fibre 0.87, 95% CI: 0.79-0.96). Similar linear associations were observed for colon and rectal cancers. The association between total dietary fibre and risk of colorectal cancer risk did not differ by age, sex, or anthropometric, lifestyle, and dietary variables. Fibre from cereals and fibre from fruit and vegetables were similarly associated with colon cancer; but for rectal cancer, the inverse association was only evident for fibre from cereals. CONCLUSIONS/SIGNIFICANCE Our results strengthen the evidence for the role of high dietary fibre intake in colorectal cancer prevention.
Resumo:
OBJECTIVE: To evaluate nutritional status and dietary habits after implementation of a nutritional education program in professional handball players. RESEARCH METHODS AND PROCEDURES: Longitudinal study of 14 handball players evaluated with 72-h recall, a questionnaire on food consumption and anthropometric measures during 4 months. The intervention consisted of a nutrition education program. RESULTS: Energy intake was consistently below the recommended allowances. Macronutrient intakes as a percentage of total energy intake were below the recommended allowances for carbohydrates, and above recommended allowances for fats. Nutritional education was followed by a significant increase (p < 0.01) in total energy and macronutrient intakes, with no significant changes in macronutrient or micronutrient intakes after adjustment for energy intake. DISCUSSION: The imbalance in nutrient intake in handball players suggests that detailed re-analysis is needed to determine specific recommendations for this population. Nutritional education with continuous follow-up to monitor athletes' dietary habits may lead them to adopt appropriate nutritional habits to optimize dietary intakes. The lack of specific recommendations for micronutrient intakes in athletes leads to confusion regarding appropriate intakes; biochemical tests that yield normal values (albeit approaching cut-off values for deficiency) may disguise deficient status for some nutrients when strenuous exercise is involved. CONCLUSION: In-depth studies with nutrition education programs that include long-term follow-up are advisable to avoid deficiencies that can lead to irreversible damage in competitive athletes.
Resumo:
We report a novel technique for computing diet-induced thermogenesis using data from 24-h respiration chamber measurements of 76 subjects. Physical activity (PA) was determined using a radar system to assess its duration and an accelerometer to evaluate its intensity. The regression line relating PA and energy expenditure facilitated calculation of the integrated thermogenic response to the total energy ingested (11.4% ± 3.8%), which is consistent with the values classically reported in the literature (10%) at the group level.
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
A first assessment of debris flow susceptibility at a large scale was performed along the National Road N7, Argentina. Numerous catchments are prone to debris flows and likely to endanger the road-users. A 1:50,000 susceptibility map was created. The use of a DEM (grid 30 m) associated to three complementary criteria (slope, contributing area, curvature) allowed the identification of potential source areas. The debris flow spreading was estimated using a process- and GISbased model (Flow-R) based on basic probabilistic and energy calculations. The best-fit values for the coefficient of friction and the mass-to-drag ratio of the PCM model were found to be ? = 0.02 and M/D = 180 and the resulting propagation on one of the calibration site was validated using the Coulomb friction model. The results are realistic and will be useful to determine which areas need to be prioritized for detailed studies.
Resumo:
The effect of diet composition [high-carbohydrate, low-fat (HC) and high-fat, low-carbohydrate (HF) diets] on macronutrient intakes and nutrient balances was investigated in young men of normal body weight. Eleven subjects were studied on two occasions for 48 h in a whole-body indirect calorimeter in a crossover design. Subjects selected their meals from a list containing a large variety of common food, which had a food quotient > 0.85 for the HC diet and < 0.85 for the HF diet. The average ad libitum intake was 14.41 +/- 0.85 MJ/d (67%, 18%, and 15% of energy as carbohydrate, fat, and protein, respectively) with the HC diet and 18.25 +/- 0.90 MJ/d (26%, 61%, and 13% of energy as carbohydrate, fat, and protein, respectively) with the HF diet. Total energy expenditure was not significantly influenced by diet composition: 10.46 +/- 0.27 and 10.97 +/- 0.22 MJ/d for the HC and HF diets, respectively. During the 2 test days, cumulative carbohydrate storage was 418 +/- 72 and 205 +/- 47 g, and fat balance was 29 +/- 17 and 291 +/- 29 g with the HC and HF diets, respectively. Only the HF diet induced a significantly positive fat balance. These results emphasize the important role of the dietary fat content in body fat storage.
Resumo:
An active strain formulation for orthotropic constitutive laws arising in cardiac mechanics modeling is introduced and studied. The passive mechanical properties of the tissue are described by the Holzapfel-Ogden relation. In the active strain formulation, the Euler-Lagrange equations for minimizing the total energy are written in terms of active and passive deformation factors, where the active part is assumed to depend, at the cell level, on the electrodynamics and on the specific orientation of the cardiac cells. The well-posedness of the linear system derived from a generic Newton iteration of the original problem is analyzed and different mechanical activation functions are considered. In addition, the active strain formulation is compared with the classical active stress formulation from both numerical and modeling perspectives. Taylor-Hood and MINI finite elements are employed to discretize the mechanical problem. The results of several numerical experiments show that the proposed formulation is mathematically consistent and is able to represent the main key features of the phenomenon, while allowing savings in computational costs.
Resumo:
The overall thermogenic response to food intake measured over a whole day in 20 young nondiabetic obese women (body fat mean +/- SEM: 38.6 +/- 0.7%), was compared with that obtained in eight nonobese control women (body fat: 24.7 +/- 0.9%). The energy expenditure of the subjects was continuously measured over 24 h with a respiration chamber, and the spontaneous activity was assessed by a radar system. A new approach was used to obtain the integrated thermogenic response to the three meals ingested over the day (from 8:30 AM to 10:30 PM). This method allows to subtract the energy expended for physical activity from total energy expenditure and to calculate the integrated dietary-induced thermogenesis as the difference between the energy expended without physical activity and basal metabolic rate. The thermogenic response to the three meals (expressed in percentage of the total energy ingested) was found to be blunted in obese women (8.7 +/- 0.8%) as compared with that of controls (14.8 +/- 1.1%). There was an inverse correlation between the percentage body fat and the diet-induced thermogenesis (r = -0.61, p less than 0.001). In addition, the relative increase in diurnal urinary norepinephrine excretion was lower in obese than in the control subjects. It is concluded that a low overall thermogenic response to feeding may be a contributing factor for energy storage in some obese subjects; a blunted response of the sympathetic nervous system could explain this low thermogenic response.
Resumo:
BACKGROUND: Higher nighttime blood pressure (BP) and the loss of nocturnal dipping of BP are associated with an increased risk for cardiovascular events. However, the determinants of the loss of nocturnal BP dipping are only beginning to be understood. We investigated whether different indicators of physical activity were associated with the loss of nocturnal dipping of BP. METHODS: We conducted a cross-sectional study of 103 patients referred for 24-hour ambulatory monitoring of BP. We measured these patients' step count (SC), active energy expenditure (AEE), and total energy expenditure simultaneously, using actigraphs. RESULTS: In our study population of 103 patients, most of whom were hypertensive, SC and AEE were associated with nighttime systolic BP in univariate (SC, r = -0.28, P < 0.01; AEE, r = -0.20, P = 0.046) and multivariate linear regression analyses (SC, coefficient beta = -5.37, P < 0.001; AEE, coefficient beta = -0.24, P < 0.01). Step count was associated with both systolic (r = 0.23, P = 0.018) and diastolic (r = 0.20, P = 0.045) BP dipping. Nighttime systolic BP decreased progressively across the categories of sedentary, moderately active, and active participants (125mm Hg, 116mm Hg, 112mm Hg, respectively; P = 0.002). The degree of BP dipping of BP increased progressively across the same three categories of activity (respectively 8.9%, 14.6%, and 18.6%, P = 0.002, for systolic BP and respectively 12.8%, 18.1%, and 22.2%, P = 0.006, for diastolic BP). CONCLUSIONS: Step count is continuously associated with nighttime systolic BP and with the degree of BP dipping independently of 24-hour mean BP. The combined use of an actigraph for measuring indicators of physical activity and a device for 24-hour measurement of ambulatory BP may help identify patients at increased risk for cardiovascular events in whom increased physical activity toward higher target levels may be recommended.
Resumo:
Measurement of total energy expenditure may be crucial to an understanding of the relation between physical activity and disease and in order to frame public health intervention. To devise a self-administered physical activity frequency questionnaire (PAFQ), the following data-based approach was used. A 24-hour recall was administered to a random sample of 919 adult residents of Geneva, Switzerland. The data obtained were used to establish the list of activities (and their median duration) that contributed to 95% of the energy expended, separately for men and women. Activities that were trivial for the whole sample but that contributed to > or = 10% of an individual's energy expenditure were also selected. The final PAFQ lists 70 activities or group of activities with their typical duration. About 20 minutes are required for respondents to indicate the number of days and the number of hours per day that they performed each activity. The PAFQ method was validated against a heart rate monitor, a more objective method. The total energy estimated by the PAFQ in 41 volunteers correlated well (r = 0.76) with estimates using a heart rate monitor. The authors conclude that the design of their self-administered physical activity frequency questionnaire based on data from 24-hour recall appeared to accurately estimate energy expenditure.