874 resultados para Time-varying covariance matrices
Resumo:
We examine the dynamics of US output and inflation using a structural time varyingcoefficient VAR. We show that there are changes in the volatility of both variables andin the persistence of inflation. Technology shocks explain changes in output volatility,while a combination of technology, demand and monetary shocks explain variations inthe persistence and volatility of inflation. We detect changes over time in the transmission of technology shocks and in the variance of technology and of monetary policyshocks. Hours and labor productivity always increase in response to technology shocks.
Resumo:
We examine the dynamics of output growth and inflation in the US, Euro area and UK using a structural time varying coefficient VAR. There are important similarities in structural inflation dynamics across countries; output growth dynamics differ. Swings in the magnitude of inflation and output growth volatilities and persistences are accounted for by a combination of three structural shocks. Changes over time in the structure of the economy are limited and permanent variations largely absent. Changes in the volatilities of structural shocks matter.
Resumo:
Preface In this thesis we study several questions related to transaction data measured at an individual level. The questions are addressed in three essays that will constitute this thesis. In the first essay we use tick-by-tick data to estimate non-parametrically the jump process of 37 big stocks traded on the Paris Stock Exchange, and of the CAC 40 index. We separate the total daily returns in three components (trading continuous, trading jump, and overnight), and we characterize each one of them. We estimate at the individual and index levels the contribution of each return component to the total daily variability. For the index, the contribution of jumps is smaller and it is compensated by the larger contribution of overnight returns. We test formally that individual stocks jump more frequently than the index, and that they do not respond independently to the arrive of news. Finally, we find that daily jumps are larger when their arrival rates are larger. At the contemporaneous level there is a strong negative correlation between the jump frequency and the trading activity measures. The second essay study the general properties of the trade- and volume-duration processes for two stocks traded on the Paris Stock Exchange. These two stocks correspond to a very illiquid stock and to a relatively liquid stock. We estimate a class of autoregressive gamma process with conditional distribution from the family of non-central gamma (up to a scale factor). This process was introduced by Gouriéroux and Jasiak and it is known as Autoregressive gamma process. We also evaluate the ability of the process to fit the data. For this purpose we use the Diebold, Gunther and Tay (1998) test; and the capacity of the model to reproduce the moments of the observed data, and the empirical serial correlation and the partial serial correlation functions. We establish that the model describes correctly the trade duration process of illiquid stocks, but have problems to adjust correctly the trade duration process of liquid stocks which present long-memory characteristics. When the model is adjusted to volume duration, it successfully fit the data. In the third essay we study the economic relevance of optimal liquidation strategies by calibrating a recent and realistic microstructure model with data from the Paris Stock Exchange. We distinguish the case of parameters which are constant through the day from time-varying ones. An optimization problem incorporating this realistic microstructure model is presented and solved. Our model endogenizes the number of trades required before the position is liquidated. A comparative static exercise demonstrates the realism of our model. We find that a sell decision taken in the morning will be liquidated by the early afternoon. If price impacts increase over the day, the liquidation will take place more rapidly.
Resumo:
During the Greek debt crisis after 2010, the German government insisted on harshausterity measures. This led to a rapid cooling of relations between the Greekand German governments. We compile a new index of public acrimony betweenGermany and Greece based on newspaper reports and internet search terms. Thisinformation is combined with historical maps on German war crimes during theoccupation between 1941 and 1944. During months of open conflict between Germanand Greek politicians, German car sales fell markedly more than those of cars fromother countries. This was especially true in areas affected by German reprisals duringWorldWar II: areas where German troops committed massacres and destroyed entirevillages curtailed their purchases of German cars to a greater extent during conflictmonths than other parts of Greece. We conclude that cultural aversion was a keydeterminant of purchasing behavior, and that memories of past conflict can affecteconomic choices in a time-varying fashion. These findings are compatible withbehavioral models emphasizing the importance of salience for individual decision-making.
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
We propose new methods for evaluating predictive densities. The methods includeKolmogorov-Smirnov and Cram?r-von Mises-type tests for the correct specification ofpredictive densities robust to dynamic mis-specification. The novelty is that the testscan detect mis-specification in the predictive densities even if it appears only overa fraction of the sample, due to the presence of instabilities. Our results indicatethat our tests are well sized and have good power in detecting mis-specification inpredictive densities, even when it is time-varying. An application to density forecastsof the Survey of Professional Forecasters demonstrates the usefulness of the proposedmethodologies.
Resumo:
We estimate the response of stock prices to exogenous monetary policy shocks usinga vector-autoregressive model with time-varying parameters. Our evidence points toprotracted episodes in which, after a a short-run decline, stock prices increase persistently in response to an exogenous tightening of monetary policy. That responseis clearly at odds with the "conventional" view on the effects of monetary policy onbubbles, as well as with the predictions of bubbleless models. We also argue that it isunlikely that such evidence be accounted for by an endogenous response of the equitypremium to the monetary policy shocks.
Resumo:
BACKGROUND: This study describes seasonality of congenital anomalies in Europe to provide a baseline against which to assess the impact of specific time varying exposures such as the H1N1 pandemic influenza, and to provide a comprehensive and recent picture of seasonality and its possible relation to etiologic factors. METHODS: Data on births conceived in 2000 to 2008 were extracted from 20 European Surveillance for Congenital Anomalies population-based congenital anomaly registries in 14 European countries. We performed Poisson regression analysis encompassing sine and cosine terms to investigate seasonality of 65,764 nonchromosomal and 12,682 chromosomal congenital anomalies covering 3.3 million births. Analysis was performed by estimated month of conception. Analyses were performed for 86 congenital anomaly subgroups, including a combined subgroup of congenital anomalies previously associated with influenza. RESULTS: We detected statistically significant seasonality in prevalence of anomalies previously associated with influenza, but the conception peak was in June (2.4% excess). We also detected seasonality in congenital cataract (April conceptions, 27%), hip dislocation and/or dysplasia (April, 12%), congenital hydronephrosis (July, 12%), urinary defects (July, 5%), and situs inversus (December, 36%), but not for nonchromosomal anomalies combined, chromosomal anomalies combined, or other anomalies analyzed. CONCLUSION: We have confirmed previously described seasonality for congenital cataract and hip dislocation and/or dysplasia, and found seasonality for congenital hydronephrosis and situs inversus which have not previously been studied. We did not find evidence of seasonality for several anomalies which had previously been found to be seasonal. Influenza does not appear to be an important factor in the seasonality of congenital anomalies.
Resumo:
OBJECTIVE: To estimate the effect of combined antiretroviral therapy (cART) on mortality among HIV-infected individuals after appropriate adjustment for time-varying confounding by indication. DESIGN: A collaboration of 12 prospective cohort studies from Europe and the United States (the HIV-CAUSAL Collaboration) that includes 62 760 HIV-infected, therapy-naive individuals followed for an average of 3.3 years. Inverse probability weighting of marginal structural models was used to adjust for measured confounding by indication. RESULTS: Two thousand and thirty-nine individuals died during the follow-up. The mortality hazard ratio was 0.48 (95% confidence interval 0.41-0.57) for cART initiation versus no initiation. In analyses stratified by CD4 cell count at baseline, the corresponding hazard ratios were 0.29 (0.22-0.37) for less than 100 cells/microl, 0.33 (0.25-0.44) for 100 to less than 200 cells/microl, 0.38 (0.28-0.52) for 200 to less than 350 cells/microl, 0.55 (0.41-0.74) for 350 to less than 500 cells/microl, and 0.77 (0.58-1.01) for 500 cells/microl or more. The estimated hazard ratio varied with years since initiation of cART from 0.57 (0.49-0.67) for less than 1 year since initiation to 0.21 (0.14-0.31) for 5 years or more (P value for trend <0.001). CONCLUSION: We estimated that cART halved the average mortality rate in HIV-infected individuals. The mortality reduction was greater in those with worse prognosis at the start of follow-up.
Resumo:
The hydrogeological properties and responses of a productive aquifer in northeastern Switzerland are investigated. For this purpose, 3D crosshole electrical resistivity tomography (ERT) is used to define the main lithological structures within the aquifer (through static inversion) and to monitor the water infiltration from an adjacent river. During precipitation events and subsequent river flooding, the river water resistivity increases. As a consequence, the electrical characteristics of the infiltrating water can be used as a natural tracer to delineate preferential flow paths and flow velocities. The focus is primarily on the experiment installation, data collection strategy, and the structural characterization of the site and a brief overview of the ERT monitoring results. The monitoring system comprises 18 boreholes each equipped with 10 electrodes straddling the entire thickness of the gravel aquifer. A multi-channel resistivity system programmed to cycle through various four-point electrode configurations of the 180 electrodes in a rolling sequence allows for the measurement of approximately 15,500 apparent resistivity values every 7 h on a continuous basis. The 3D static ERT inversion of data acquired under stable hydrological conditions provides a base model for future time-lapse inversion studies and the means to investigate the resolving capability of our acquisition scheme. In particular, it enables definition of the main lithological structures within the aquifer. The final ERT static model delineates a relatively high-resistivity, low-porosity, intermediate-depth layer throughout the investigated aquifer volume that is consistent with results from well logging and seismic and radar tomography models. The next step will be to define and implement an appropriate time-lapse ERT inversion scheme using the river water as a natural tracer. The main challenge will be to separate the superposed time-varying effects of water table height, temperature, and salinity variations associated with the infiltrating water.
Resumo:
One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586-608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds.
Resumo:
In this correspondence, we propose applying the hiddenMarkov models (HMM) theory to the problem of blind channel estimationand data detection. The Baum–Welch (BW) algorithm, which is able toestimate all the parameters of the model, is enriched by introducingsome linear constraints emerging from a linear FIR hypothesis on thechannel. Additionally, a version of the algorithm that is suitable for timevaryingchannels is also presented. Performance is analyzed in a GSMenvironment using standard test channels and is found to be close to thatobtained with a nonblind receiver.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
An analytical approach for the interpretation of multicomponent heterogeneous adsorption or complexation isotherms in terms of multidimensional affinity spectra is presented. Fourier transform, applied to analyze the corresponding integral equation, leads to an inversion formula which allows the computation of the multicomponent affinity spectrum underlying a given competitive isotherm. Although a different mathematical methodology is used, this procedure can be seen as the extension to multicomponent systems of the classical Sips’s work devoted to monocomponent systems. Furthermore, a methodology which yields analytical expressions for the main statistical properties (mean free energies of binding and covariance matrix) of multidimensional affinity spectra is reported. Thus, the level of binding correlation between the different components can be quantified. It has to be highlighted that the reported methodology does not require the knowledge of the affinity spectrum to calculate the means, variances, and covariance of the binding energies of the different components. Nonideal competitive consistent adsorption isotherm, widely used in metal/proton competitive complexation to environmental macromolecules, and Frumkin competitive isotherms are selected to illustrate the application of the reported results. Explicit analytical expressions for the affinity spectrum as well as for the matrix correlation are obtained for the NICCA case. © 2004 American Institute of Physics.
Resumo:
Our research aims to analyze the causal relationships in the behavior of public debt issued by peripheral member countries of the European Economic and Monetary Union -EMU-, with special emphasis on the recent episodes of crisis triggered in the eurozone sovereign debt markets since 2009. With this goal in mind, we make use of a database of daily frequency of yields on 10-year government bonds issued by five EMU countries -Greece, Ireland, Italy, Portugal and Spain-, covering the entire history of the EMU from its inception on 1 January 1999 until 31 December 2010. In the first step, we explore the pair-wise causal relationship between yields, both for the whole sample and for changing subsamples of the data, in order to capture the possible time-varying causal relationship. This approach allows us to detect episodes of contagion between yields on bonds issued by different countries. In the second step, we study the determinants of these contagion episodes, analyzing the role played by different factors, paying special attention to instruments that capture the total national debt -domestic and foreign- in each country.