933 resultados para Time delay


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel scheme for enhancing electron localization in intense-field dissociation is outlined. Through manipulation of a bound vibrational wavepacket in the exemplar deuterium molecular ion, simulations demonstrate that the application of multiple phase-locked, few-cycle IR pulses can provide a powerful scheme for directing the molecular dissociation pathway. By tuning the time delay and carrier–envelope–phase for a sequence of pulse interactions, the probability of the electron being localized to a chosen nucleus can be enhanced to above 80%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of short time delays inserted between pairs of subjects were found to affect their ability to synchronize a musical task. The subjects performed a clapping rhythm together from separate sound-isolated rooms via headphones and without visual contact. One-way time delays between pairs were manipulated electronically in the range of 3 to 78 ms. We are interested in quantifying the envelope of time delay within which two individuals produce synchronous per- formances. The results indicate that there are distinct regimes of mutually coupled behavior, and that `natural time delay'o¨delay within the narrow range associated with travel times across spatial arrangements of groups and ensembleso¨supports the most stable performance. Conditions outside of this envelope, with time delays both below and above it, create characteristic interaction dynamics in the mutually coupled actions of the duo. Trials at extremely short delays (corresponding to unnaturally close proximity) had a tendency to accelerate from anticipation. Synchronization lagged at longer delays (larger than usual physical distances) and produced an increasingly severe deceleration and then deterioration of performed rhythms. The study has implications for music collaboration over the Internet and suggests that stable rhythmic performance can be achieved by `wired ensembles' across distances of thousands of kilometers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The resonance Raman spectra of the lowest lying singlet (S-1) state of free-base tetraphenylporphyrin and seven of its isotopomers were recorded under pump-and-probe conditions with a time delay of -2 ns between pump and probe laser pulses, In the S-1 spectra of the isotopomers, as in the ground state, there are dramatic splittings of what appear to be single bands in the natural isotopic abundance spectrum. The most structurally significant bands of the S-1 state were assigned on the basis of the isotope data, In some cases it was necessary to curve fit unresolved bands in the excited-state spectra in order to account for observed intensity ratios and to rationalize isotope shifts, The changes in band positions on excitation to the S-1 state were compared with those from earlier studies on the T-1 state. The changes in band positions were found to be similar For both excited states. Most notable was the similar shift in nu(2), the most widely used marker band for orbital character. The data are interpreted as implying that the lowest lying singlet state is a configuration interaction admixture of b(1u)b(2g) + a(u)b(3g) configurations with the coefficients weighted heavily in favour of b(1n)b(2g), which Is the configuration of the T-1 state. Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High cadence, multiwavelength, optical observations of a solar active region, obtained with the Swedish Solar Telescope, are presented. Two magnetic bright points are seen to separate in opposite directions at a constant velocity of 2.8 km s(-1). After a separation distance of approximate to 4400 km is reached, multiple Ellerman bombs are observed in both Ha and Ca-K images. As a result of the Ellerman bombs, periodic velocity perturbations in the vicinity of the magnetic neutral line, derived from simultaneous Michelson Doppler Imager data, are generated with amplitude +/-6 km s(-1) and wavelength approximate to 1000 km. The velocity oscillations are followed by an impulsive brightening visible in Ha and Ca-K, with a peak intensity enhancement of 63%. We interpret these velocity perturbations as the magnetic field deformation necessary to trigger forced reconnection. A time delay of approximate to 3 minutes between the Ha-wing and Ca-K observations indicates that the observed magnetic reconnection occurs at a height of similar to 200 km above the solar surface. These observations are consistent with theoretical predictions and provide the first observational evidence of microflare activity driven by forced magnetic reconnection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new type of broadband retrodirective array, which has been constructed using a microstrip Rotman lens, is presented. Automatic tracking of targets is obtained by exploiting the conjugate phase response of the beamforming network which is exhibited when the input ports are terminated with either open or short circuits. In addition, the true time-delay property of the Rotman lens gives broadband operation of the self-tracking array when used in conjunction with Vivaldi antennas. The simulated and measured bistatic and monostatic radar cross-section (RCS) patterns of a structure consisting of 13 beamports and 12 array ports are presented at frequencies in the range 8-12 GHz. Significantly enhanced RCS within the scan coverage ±40° is demonstrated by comparing the retrodirective behavior of a 12-element Vivaldi array terminated with and without the Rotman lens. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of accurately measuring gas diffusivity in porous materials has led to a number of methods being developed. In this study the Temporal Analysis of Products (TAP) reactor and Flux Response Technology (FRT) have been used to examine the diffusivity in the washcoat supported on cordierite monoliths. Herein, the molecular diffusion of propane within four monoliths with differently prepared alumina/CeZrOx washcoats was investigated as a function of temperature. Moment-based analysis of the observed TAP responses led to the calculation of the apparent intermediate gas constant, Kp, that characterises adsorption into the mesoporous network and apparent time delay, tapp, that characterises residence time in the mesoporous network. Additionally, FRT has been successfully adapted as an extensive in situ perturbation technique in measuring intraphase diffusion coefficients in the washcoats of the same four monolith samples. The diffusion coefficients obtained by moment-based analysis of TAP responses are larger than the coefficients determined by zero length column (ZLC) analysis of flux response profiles with measured values of the same monolith samples between 20 and 100 °C ranging from 2–5×10-9 m2 s-1 to 4–8×10-10 m2 s-1, respectively. The TAP and FRT data, therefore, provide a range of the lower and upper limits of diffusivity, respectively. The reported activation energies and diffusivities clearly correlate with the difference in the washcoat structure of different monolith samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of a Rotman lens, which forms fixed beams at 0°, ±15° and ±30°, is augmented using liquid crystal phase shifters to simultaneously steer each beam by up to ±7.5°. Measured results are used to demonstrate that the true time delay property of the antenna and voltage controlled phase shifters can be exploited to provide continuously scanned beams with full coverage over an angular range of ±37.5°, and with operation over the band 6-10 GHz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the photoionization of Ne+ in the combined field of a short infrared laser pulse and a delayed ultrashort pulse of the infrared laser's 23rd harmonic. We observe an ionization yield compatible with a picture in which one electron gets excited into Rydberg states by the harmonic laser field and is subsequently removed by the infrared laser field. Modulations are seen in the ionization yield as a function of time delay. These modulations originate from the trapping of population in low members of the Rydberg series with different states being populated at different ranges of delay times. The calculations further demonstrate that single-threshold calculations cannot reproduce the Ne+ photoionization yields obtained in multithreshold calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use R-matrix theory with time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number M_L=0 and M_L=1 at a laser wavelength of 390 nm and peak intensity of 10(14) W/cm(2). Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for M_L. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with M_L=0, the dynamics with respect to time delay of an ionizing probe pulse modeled by using RMT theory is found to be in good agreement with available experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter presents a novel hand-held instrument capable of real-time in situ detection and identification of heavy metals, along with the potential use of novel taggants in environmental forensic investigations. The proposed system provides the facilities found in a traditional laboratory-based instrument but in a hand held design, without the need for an associated computer. The electrochemical instrument uses anodic stripping voltammetry, which is a precise and sensitive analytical method with excellent limits of detection. The sensors comprise a small disposable plastic strip of screen-printed electrodes rather than the more common glassy carbon disc and gold electrodes. The system is designed for use by a surveyor on site, allowing them to locate hotspots, thus avoiding the expense and time delay of prior laboratory analysis. This is particularly important in environmental forensic analysis when a site may have been released back to the owner and samples could be compromised on return visits. The system can be used in a variety of situations in environmental assessments, the data acquired from which provide a metals fingerprint suitable for input to a database. The proposed novel taggant tracers, based on narrow-band atomic fluorescence, are under development for potential deployment as forensic environmental tracers. The use of discrete fluorescent species in an environmentally stable host has been investigated to replace existing toxic, broadband molecular dye tracers. The narrow band emission signals offer the potential for tracing a large number of signals in the same environment. This will give increased data accuracy and allow multiple source environmental monitoring of environmental parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We theoretically demonstrate the possibility to generate both trains and isolated attosecond pulses with high ellipticity in a practical experimental setup. The scheme uses circularly polarized, counterrotating two-color driving pulses carried at the fundamental and its second harmonic. Using a model Ne atom, we numerically show that highly elliptic attosecond pulses are generated already at the single-atom level. Isolated pulses are produced by using few-cycle drivers with controlled time delay between them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre Em Engenharia Química e Biológica Ramo de processos Químicos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyses earthquake data in the perspective of dynamical systems and its Pseudo Phase Plane representation. The seismic data is collected from the Bulletin of the International Seismological Centre. The geological events are characterised by their magnitude and geographical location and described by means of time series of sequences of Dirac impulses. Fifty groups of data series are considered, according to the Flinn-Engdahl seismic regions of Earth. For each region, Pearson’s correlation coefficient is used to find the optimal time delay for reconstructing the Pseudo Phase Plane. The Pseudo Phase Plane plots are then analysed and characterised.