916 resultados para Tidal Intrusion
Resumo:
Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security.
Resumo:
Security intrusions in large systems is a problem due to its lack of scalability with the current IDS-based approaches. This paper describes the RECLAMO project, where an architecture for an Automated Intrusion Response System (AIRS) is being proposed. This system will infer the most appropriate response for a given attack, taking into account the attack type, context information, and the trust and reputation of the reporting IDSs. RECLAMO is proposing a novel approach: diverting the attack to a specific honeynet that has been dynamically built based on the attack information. Among all components forming the RECLAMO's architecture, this paper is mainly focused on defining a trust and reputation management model, essential to recognize if IDSs are exposing an honest behavior in order to accept their alerts as true. Experimental results confirm that our model helps to encourage or discourage the launch of the automatic reaction process.
Resumo:
Acknowledgements James J. Waggitt was funded by a NERC Case studentship supported by OpenHydro Ltd and Marine Scotland Science (NE/J500148/1). Vessel-based transects were funded by a NERC (NE/J004340/1) and a Scottish National Heritage (SNH) grant. FVCOM modelling was funded by a NERC grant (NE/J004316/1). Marine Scotland Science provided time on the FRV Alba-na-Mara as part as the Marine Collaboration Research Forum (MarCRF). The bathymetry data used in hydrodynamic models (HI 1122 Sanday Sound to Westray Firth) was collected by the Maritime & Coastguard Agency (MCA) as part of the UK Civil Hydrography Programme. We wish to thank Christina Bristow, Matthew Finn and Jennifer Norris at the European Marine Energy Centre (EMEC); Marianna Chimienti, Ciaran Cronin, Tim Sykes and Stuart Thomas for performing vessel-based transects; Marine Scotland Science staff Eric Armstrong, Ian Davies, Mike Robertson, Robert Watret and Michael Stewart for their assistance; Shaun Fraser, Pauline Goulet, Alex Robbins, Helen Wade and Jared Wilson for invaluable discussions; Thomas Cornulier, Alex Douglas, James Grecian and Samantha Patrick for their help with statistical analysis; and Gavin Siriwardena, Leigh Torres, Mark Whittingham and Russell Wynn for their constructive comments on earlier versions of this manuscript.
Resumo:
Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water – natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented simulations by ACUAINTRUSION and PHREEQC produced similar results, making predictions consistent with the experimental data. However, the simulated results are not identical to the experimental data; sulphate (total S) is overpredicted by both models, most likely due to such factors as the kinetics of gypsum, the possible variations in the exchange coefficients due to salinity and the neglect of other processes.
Resumo:
The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.
Resumo:
Mercury intrusion porosimetry (MIP) has been widely used to evaluate the quality of concrete through the pore size distribution parameters. Two of these parameters are the critical pore diameter (Dcrit) and the percentage of the most interconnected net of pores compared to the total volume of pores. Some researchers consider Dcrit as the diameter obtained from the inflexion point of the cumulative mercury intrusion curve while others consider Dcrit as the diameter obtained from the point of abrupt variation in the same curve. This study aims to analyze two groups of concretes of varying w/c ratios, one cast with pozzolanic cement and another with high initial strength cement, in order to determine which of these diameters feature a better correlation with the quality parameters of the concretes. The concrete quality parameters used for the evaluations were (1) the w/c ratios and (2) chloride diffusion coefficients measured at approximately 90 days. MIP cumulative distributions of the same concretes were also measured at about 90 days, and Dcrit values were determined (1) from the point of abrupt variation and alternatively, (2) from the inflexion point of each of these plots. It was found that Dcrit values measured from the point of abrupt variation were useful indicators of the quality of the concrete, but the Dcrit values based on the inflexion points were not. Hence, it is recommended that Dcrit and the percentage of the most interconnected volume of pores should be obtained considering the point of abrupt variation of the cumulative curve of pore size distribution.
Resumo:
This time last year politicians and media were stoking fears over the massive floods of Romanians and Bulgarians who were about to invade the UK (but not only) as the employment restrictions for these EU citizens were being lifted in nine remaining EU Member States. These fears have proven to be unfounded. Nevertheless, major national and EU developments will continue to feed this debate.
Resumo:
Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.