892 resultados para Three Body Problem


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the S-1(0) neutron and proton superfluidity in isospin-asymmetric nuclear matter. We have concentrated on the isospin dependence of the pairing gaps and the effect of a microscopic three-body force. It is found that as the isospin asymmetry goes higher, the neutron S-1(0) superfluid phase shrinks gradually to a smaller density domain, whereas the proton one extends rapidly to a much wider density domain. The three-body force turns out to weaken the neutron S-1(0) superfluidity slightly, but it suppresses strongly the proton S-1(0) superfluidity at high densities in nuclear matter with large isospin asymmetry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reduced velocity correlation functions of the Intermediate Mass Fragments (IMFs) were measured in the reactions of Ar-36+ Sn-112,Sn-124 at 35MeV/u. The anti-correlation at small reduced velocities is more pronounced in Ar-36+ Sn-124 system than that in Ar-36+ Sn-112 system. The difference of the correlation functions between the two reactions is mainly contributed by the particle pairs with high momenta. A three-body Coulomb repulsive trajectory code (MENEKA) is employed to calculate the emission time scale of IMFs for-the both systems. The time scale is 150fm/c in the Ar-36+ Sn-112 system and 120fm/c in the Ar-36+ Sn-124 system, respectively. A calculation based on an Isospin dependence Quantum Molecular Dynamics code (IQMD) reveals that the emission time spectrum of IMFs is shifted slightly leftwards in Ar-36+ Sn-124 compared with that in the Ar-16+ Sn-112 system, indicating a shorter emission time scale. Correspondingly, the central density of the hot nuclei decreases faster in Ar-36+ Sn-124 than in Ar-36+ Sn-112

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of the finite temperature Brueckner-Hartree-Fock approach including the contribution of the microscopic three-body force, the single nuclear potential and the nucleon effective mass in hot nuclear matter at various temperatures and densities have been calculated by using the hole-line expansion for mass operator, and the effects of the three-body forces and the ground state correlations on the single nucleon potential have been investigated. It is shown that both the ground state correlations and the three-body force affect considerably the density and temperature dependence of the single nucleon potential. The rearrangement correction in the single nucleon potential is repulsive and it reduces remarkably the attraction of the single nucleon potential in the low-momentum region. The rearrangement contribution due to the ground state correlations becomes smaller as the temperature rises up and becomes larger as the density increases. The effect of the three-body force on the ground state correlations is to reduce the contribution of rearrangement. At high densities, the single nucleon potential containing both the rearrangement correction and the contribution of the three-body force becomes more repulsive as the temperature increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter, and beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two- and three-body interaction. The investigation covers a wide baryon density range as needed in the applications to neutron stars. The results for the transport coefficients in beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of nonradial modes in neutron stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the equation of state (EOS) and single particle (s.p.) properties of asymmetric nuclear matter within the framework of the Brueckner-Bethe-Goldstone approach. We have discussed particularly the effect of microscopic three-body forces (TBF). It is shown that the TBF affects significantly the predicted properties of nuclear matter at high densities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigate the nucleon superfluidity in asymmetric nuclear matter and neutron star matter by using the Brueckner-Hartree-Fock approach and the BCS theory. We have predicted the isospin-asymmetry dependence of the nucleon superfluidity in asymmetric nuclear matter and discussed particularly the effect of microscopic three-body forces. It has been shown that the three-body force leads to a strong suppression of the proton S-1(0) superfluidity in beta -stable neutron star matter. Whereas the microscopic three-body force is found to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experiments of Al-23 and Mg-22 radioactive beams bombarding a C-12 target at an energy of 60 similar to 70 A MeV have been performed at the projectile fragment separator beamline (RIPS) in the RIKEN Ring Cyclotron Facility to study the two-proton emission from Al-23 and Mg-22 excited states, respectively. The trajectorie of the decay products, namely Na-21 + p + p from Al-23 and Ne-20 + p + p from Mg-22, are clean identified. The relative momentum and opening angle between two protons in the rest frame of three body decay channels are obtained by relativistic-kinematics reconstruction. The results demonstrate that there are some di-proton emission components from He-2 cluster for the excited Al-23 and Mg-22.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in medium nucleon-nucleon (N N) cross sections in isospin asymmetric nuclear matter at various densities are investigated in the frame work of Brueckner-Hartree-Fock theory with the Bonn B two-body nucleon-nucleon inter action supplemented with a new version microscopic three-body force (TBF). The TBF depresses the amplitude of cross sections at high density region. At low densities, the proton-proton and neutron-neutron cross sections decrease while the proton-neutron one increases as the asymmetry increases. But the sensitivity of the N N cross sections to the isospin a symmetry are reduced with the increasing density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

用反冲离子动量谱仪研究了低能He2+与Ar碰撞的多电子交换过程。该技术的独特优势是对反冲离子末态动量的完全测量。实验上鉴别了单电子俘获SC,双电子俘获DC和转移电离TI各子过程,并得到了末态量子态布居信息,首次测量了该体系各反应道的角微分截面及直接与碰撞参数相关的信息。实验发现电子主要俘获到入射离子基态或单激发态,反冲离子处于单激发态或多激发态,并有较大几率形成空心离子。研究表明电荷交换过程中存在较强的电子-电子关联作用。角分布随反冲离子电荷态增加而变宽,并向大角度方向移动,表明碰撞参数减小,相互作用加剧。SC和DC与MCBM理论角微分截面符合很好,说明在大碰撞参数时经典近似有一定合理性。不同碰撞参数范围内反冲纵向动量分布表明,SC在碰撞参数7.2a.u.≥b≥3.6a.u.时发生机率最大,随碰撞参数减小,靶离子有不断向更高激发态过渡的趋势

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文介绍了极端条件下核物质性质研究的现状以及目前常用的几种微观核多体方法,系统描述了核物质中的基态关联效应、温度效应对单核子势的影响和同位旋非对称核物质 态中子、质子超流性,重点考虑了利用介子交换流方法建立的微观三体核力所产生的影响。利用BHF和BCS的理论方法,计算了同位旋非对称核物质中 态中子和质子的对关联能隙,着重讨论了三体核力的影响。结果表明,三体核力对同位旋非对称核物质中 态的中子超流性影响相对较小,但是对 态的质子超流性具有重要影响,其效应随总核子数密度的增大而迅速增强。随着同位旋非对称度 的增加,中子能隙向低密移动,能隙峰值逐渐增大,并且这种效果随着 的增加而逐渐减弱,而质子的情况刚好相反。另外还参与了 稳定中子星物质中超流性的研究。利用质量算子空穴线展开,通过计算不同温度和密度下的核物质中单核子势和核子有效质量,重点研究和讨论了基态关联效应和三体核力贡献对热核物质中单核子势的影响,研究表明:基态关联效应提供了一个排斥效应,温度和三体核力都削弱了基态关联效应

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文介绍了当前中子及中子星物质中超流性研究的背景及现状、核多体理论Brueckner-Hartree-Fock及同位旋相关的Brueckner-Hartree-Fock方法,以及利用BHF和BCS理论计算中子及中子星物质中的对关联能隙方法。系统计算并描述了中子及中子星物质中子的3PF2态超流性,并重点考虑了利用介子交换流方法建立的微观三体核力所产生的影响。 我们的研究结果表明:三体核力对中子物质中3PF2态中子超流性有强烈的增强效应。 当在BCS能隙方程中采用自由粒子能谱近似时,三体核力使相应的对关联能隙峰值增加了77%(由0.64MeV增大到1.13MeV);当采用自洽BHF单粒子能谱时,三体核力导致相应的对关联能隙峰值由0.22MeV增大到0.50MeV,增加了约127%。 三体核力使中子星物质中3PF2态中子超流能隙随着密度的增大而单调递增。当采用自洽BHF单粒子能谱时不考虑三体核力时,对关联能隙峰值在密度约1.9fm-3时有峰值0.19MeV。而在这个两体力导致的能隙的峰值密度,三体核力导致相应的对关联能隙由0.19MeV增大到0.36MeV

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文介绍了极端条件下核物质研究的现状以及目前常用的几种核多体方法,系统描述了冷、热非对称核物质的状态方程和刀稳定中子星物质中的15。态中子和质子超流性,特别是微观三体核力对此所产生的影响。通过引入微观三体核力,扩展了有限温度的BI.tleclcller-Hal'tree-Fock(FTBHF)理论。利用这一扩展的理沦,详细研究了同位旋非对称热核物质的状态方程、液气相变临界现象以及三体核力对此所产生的影响。在不同的中质比条件下,重点讨论了热核物质液气相变的临界温度和动力学不稳定区域的温度、同位旋相关性。由此表明,三体核力的引入在一定程度上降低了液气相变的临界温度值,在固定的温度和密度下,非对称核物质的压弧随同位旋非对称度的增加而单调的增力日,而且随着核物质温度的升高和非对称度的增加,动力学不稳定区域逐渐缩小。通过与其它理论模型(特别是Di1'ac-BHF方法)所预言的结果相比较,就目前扩展的包含三体核力修正的FTBHF理论与Dilac-BHF方法所计算的临界温度的差异问题,文中给出一种可能的解释。通过计算热核物质的单粒子结合能,给出了有限温度条件下对称能的计算方式,并且细致研究了不同温度、密度下的对称能以及三体核力在高密度区域对对称能的影响。结果表明,微观三体核力强烈影响着高密度区域的对称能,使其对温度的变化更加明显。此外,其它重要物理量(例如中子和质子的单粒子势能、有效质量等)的同位旋依赖性和温度、密度相关性在文中也被详细的讨论。利用质量算子的空穴线展井,表明了在基态关联所导致的对单核子势的重排修正项影响下的HLlgenholtz-VanHove(HVH)定理的恢复程度,并且进一步计算了中子和质子化学势。并且以包含兰体核力的FTBI-方法为基础,研究了热核物质中重排项的密度和温度依赖性并讨论了三体核力对重排项的影响。通过计算不同温度和密度下的核物质中单核子势和核子有效质量,特别是研究和讨论了基态关联效应和三体核力贡献对热核物质中单核子势的影响,表明了基态关联和三体核力对单核子势修正的重要性。利用BHF和BCS的理论方法,计算了β稳定中子星物质中处于150态的中子和质子的对关联能隙,着重研究和讨论了三体核力的影响。结果表明,三体核力对刀稳定物质中{s0态中子超流性的影响相对较小,但是对,S0态质子超流性具有重要影响,其效应随核子数密度的增大而迅速增强。三体核力的主要作用是强烈地抑制了高密度区刀稳定中子星物质中的150态质子超流性,而且三体核力对中子星物质中,So态超流相的抑制效应主要是通过质子或中子的有效对相互作用而起作用的。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High order multistep methods, run at constant stepsize, are very effective for integrating the Newtonian solar system for extended periods of time. I have studied the stability and error growth of these methods when applied to harmonic oscillators and two-body systems like the Sun-Jupiter pair. I have also tried to design better multistep integrators than the traditional Stormer and Cowell methods, and I have found a few interesting ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].