908 resultados para Thiophene-2-carboxylic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of the rubidium and caesium complexes with 2-aminobenzenesulfonic acid (orthanilic acid), [Rb4(C6H6NO3S)4(H2O)]n (1) and [Cs(C6H6NO3S)]n (2) and have been determined at 200 K. Complex 1 has a repeating unit comprising four independent and different Rb coordination centres, (RbO8), (RbO7), (RbN2O4) and (RbO10), each having irregular stereochemistry and involving a number of bidentate chelate sulfonate-O,O’-metal and bridging interactions, giving a two-dimensional polymeric layered structure. Anhydrous complex 2 is also polymeric with the irregular (CsO7) coordination polyhedron comprising six sulfonate oxygen donors from three separate bidentate chelate sulfonate ligands and one monodentate bridging sulfonate oxygen, giving a two-dimensional layered structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title salt, C12H11N2O2+·C7H5O6S-, the dihedral angle between the benzene and pyridine rings in the 4-(4-nitrobenzyl)pyridinium cation is 82.7 (2)°. Within the anion there is an intramolecular hydroxy-O-HO(carboxylic acid) bond. In the crystal, the cation forms a single N+-HOsulfonate hydrogen bond with the anion. These cation-anion pairs interact through duplex anion carboxylic acid O-HOsulfonate hydrogen bonds, giving a centrosymmetric cyclic association [graph set R22(16)]. The crystals studied were non-merohedrally twinned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of two ammonium salts of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S-·H2O, (I), the 5-SSA- monoanions give two types of head-to-tail laterally linked cyclic hydrogen-bonding associations, both with graph-set R44(20). The first involves both carboxylic acid O-HOwater and water O-HOsulfonate hydrogen bonds at one end, and ammonium N-HOsulfonate and N-HOcarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O-HOsulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three-dimensional framework structure through N-HO and water O-HO hydrogen bonds to sulfonate O-atom acceptors. Anhydrous triammonium 3-carboxy-4-hydroxybenzenesulfonate 3-carboxylato-4-hydroxybenzenesulfonate, 3NH4+·C7H4O6S2-·C7H5O6S-, (II), is unusual, having both dianionic 5-SSA2- and monoanionic 5-SSA- species. These are linked by a carboxylic acid O-HO hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half-cations lying on crystallographic twofold rotation axes), give a pseudo-centrosymmetric asymmetric unit. Cation-anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N-HO hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three-dimensional framework structure. This work further demonstrates the utility of the 5-SSA- monoanion for the generation of stable hydrogen-bonded crystalline materials, and provides the structure of a dianionic 5-SSA2- species of which there are only a few examples in the crystallographic literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4-·2H2O, (I), and with adipic acid, bis­(4-car­bam­oylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42-·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carb­oxy­lic acid O-HOcarboxyl hydrogen-bonding inter­actions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-HO hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-HOcarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water mol­ecule. In the crystal structure, the two inversion-related cations are inter­linked through the two water mol­ecules, which act as acceptors in dual amide N-HOwater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N-HOwater, water O-HOamide and piperidinium N-HOcarbox­yl hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water mol­ecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aspergillus terreus is successfully used for industrial production of itaconic acid. The acid is formed from cis-aconitate, an intermediate of the tricarboxylic (TCA) cycle, by catalytic action of cis-aconitate decarboxylase. It could be assumed that strong anaplerotic reactions that replenish the pool of the TCA cycle intermediates would enhance the synthesis and excretion rate of itaconic acid. In the phylogenetic close relative Aspergillus niger, upregulated metabolic flux through glycolysis has been described that acted as a strong anaplerotic reaction. Deregulated glycolytic flux was caused by posttranslational modification of 6-phosphofructo-1-kinase (PFK1) that resulted in formation of a highly active, citrate inhibition-resistant shorter form of the enzyme. In order to avoid complex posttranslational modification, the native A. niger pfkA gene has been modified to encode for an active shorter PFK1 fragment. By the insertion of the modified A. niger pfkA genes into the A. terreus strain, increased specific productivities of itaconic acid and final yields were documented by transformants in respect to the parental strain. On the other hand, growth rate of all transformants remained suppressed which is due to the low initial pH value of the medium, one of the prerequisites for the accumulation of itaconic acid by A. terreus mycelium. © 2010 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new acylated pteridine alkaloids, duramidines A-D, two new acylated thymidine alkaloids, leptoclinidines A and B, two new 1-acylglyceryl-3-(O- carboxyhydroxymethylcholine) alkaloids, durabetaines A and B, three new 1,3-dimethyl-5-methylsulfanylimidazole alkaloids, leptoclinidamines D-F, and the known alkaloids leptoclinidamines B and C and 6-bromo-1H-indolo-3-yl-oxoacetic acid methyl ester were isolated from the Australian ascidian Leptoclinides durus. The duramidines are the first pteridine alkaloids, possessing a three carbon side chain esterified at C-1′ with a 4-hydroxy-2′- methoxycinnamic acid, and are either hydroxylated or sulfated at C-2′. The leptoclinidines are the first 3′-indole-3-carboxylic acid ester derivatives of thymidine to be reported in the literature. The durabetaines are the first glyceryl-3-(O-carboxyhydroxymethylcholine) alkaloids to be reported from an animal source and are also the only known derivatives from this class to be acylated with aromatic carboxylic acids. MS and NMR data analysis established the structures of the new compounds. All compounds were shown to be inactive when tested for cytotoxic activity against prostate (LNCaP) and breast (MDA-MB-231) cancer cell lines and antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extensive use of alkoxyamines in controlled radical polymerisation and polymer stabilisation is based on rapid cycling between the alkoxyamine (R1R2NO–R3) and a stable nitroxyl radical (R1R2NO•) via homolysis of the labile O–C bond. Competing homolysis of the alkoxyamine N–O bond has been predicted to occur for some substituents leading to production of aminyl and alkoxyl radicals. This intrinsic competition between the O–C and N–O bond homolysis processes has to this point been difficult to probe experimentally. Herein we examine the effect of local molecular structure on the competition between N–O and O–C bond cleavage in the gas phase by variable energy tandem mass spectrometry in a triple quadrupole mass spectrometer. A suite of cyclic alkoxyamines with remote carboxylic acid moieties (HOOC–R1R2NO–R3) were synthesised and subjected to negative ion electrospray ionisation to yield [M – H]− anions where the charge is remote from the alkoxyamine moiety. Collision-induced dissociation of these anions yield product ions resulting, almost exclusively, from homolysis of O–C and/or N–O bonds. The relative efficacy of N–O and O–C bond homolysis was examined for alkoxyamines incorporating different R3 substituents by varying the potential difference applied to the collision cell, and comparing dissociation thresholds of each product ion channel. For most R3 substituents, product ions from homolysis of the O–C bond are observed and product ions resulting from cleavage of the N–O bond are minor or absent. A limited number of examples were encountered however, where N–O homolysis is a competitive dissociation pathway because the O–C bond is stabilised by adjacent heteroatom(s) (e.g., R3 = CH2F). The dissociation threshold energies were compared for different alkoxyamine substituents (R3) and the relative ordering of these experimentally determined energies is shown to correlate with the bond dissociation free energies, calculated by ab initio methods. Understanding the structure-dependent relationship between these rival processes will assist in the design and selection of alkoxyamine motifs that selectively promote the desirable O–C homolysis pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transglutaminase-2 (TGM-2) stabilizes extracellular matrix (ECM) proteins by cross-linking and has been implicated in several fibrotic disorders. Arecoline present in betel quid has been proposed as one of the causative factors for oral submucous fibrosis (OSMF). Hence, we hypothesize that arecoline may regulate TGM-2 and may have a role in the pathogenesis of OSMF. The expression of TGM-2 was studied in OSMF tissues by real-time RT-PCR analysis, and significant overexpression was observed in most OSMF tissues (P = 0.0112) compared with normal tissues. Arecoline induced TGM-2 mRNA and protein expression as well as TGM-2 activity in human gingival fibroblast cells. The addition of methocramine hemihydrate (M-2 muscarinic acetylcholine receptor selective antagonist) or 8'-bromo-cAMP abolished arecoline-mediated TGM-2 induction, suggesting a role for M-2 muscarinic acid receptor and a repressor role for cAMP. Our study provides evidence for TGM-2 overexpression in OSMF and its regulation by arecoline in oral fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-one novel 1-(cyclopropyl/2,4-difluorophenyl/t-butyl)-1,4-dihydro-6-fluoro-7-(sub secondary amino)-4-oxoquinoline-3-carboxylic acids were synthesized and evaluated for their antimycobacterial in vitro and in vivo against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC 2) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the synthesized compounds, 7-(3-(diethylcarbamoyl)piperidin-1-yl)-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (7I) was found to be the most active compound in vitro with MIC of 0.09 mu M against MTB and MDR-TB respectively. In the in vivo animal model 7I decreased the mycobacterial load in lung and spleen tissues with 2.53- and 4.88-log10 protections respectively at a dose of 50 mg/kg body weight. (C) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded:chitinase, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The repeat unit of the K12 capsular polysaccharide isolated from the Acinetobacter baumannii global clone 1 clinical isolate, D36, was elucidated by means of chemical and spectroscopical methods. The structure was shown to contain N-acetyl-D-galactosamine (D-GalpNAc), N-acetyl-D-fucosamine and N-acetyl-L-fucosamine linked together in the main chain, with the novel sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-altro-non-2-ulosonic acid (5,7-di-N-acetylacinetaminic acid or Aci5Ac7Ac), attached to D-GalpNAc as a side branch. This matched the sugar composition of the K12 capsule and the genetic content of the KL12 capsule gene cluster reported previously. D-FucpNAc was predicted to be the substrate for the initiating transferase, ItrB3, with the Wzy polymerase making a α-D-FucpNAc-(1 → 3)-D-GalpNAc linkage between the repeat units. The three glycosyltransferases encoded by KL12 are all retaining glycosyltransferases and were predicted to form specific linkages between the sugars in the K12 repeat unit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaH406P-.K +, M r = 206.10, is orthorhombic, space group Pbca (from systematic absences), a = 14.538(4), b = 13.364(5), c = 6.880 (6)A, U = 1383.9 A 3, D x = 2.07 Mg m -a, Z = 8, ~.(Mo Ka) = 0.7107/~, p(MO Ka) = 1.015 mm -1. The final R value is 0.042 for a total of 1397 reflections. The high energy P-O(13) and the enolic C(1)-O(13) bonds are 1.612 and 1.374 A respectively. The enolpyruvate moiety is essentially planar. The orientation of the phosphate with respect to the pyruvate group in PEP.K is distinctly different from that in the PEP-cyclohexylammonium salt, the torsion angle C (2)-C (1)-O(13)- P being -209.1 in the former and -90 ° in the latter. The K + ion binds simultaneously to both the phosphate and carboxyl ends of the same PEP molecule. The ester O(13) is also a binding site for the cation. The K + ion is coplanar with the pyruvate moiety and binds to 0(22) and O(13) almost along their lone-pair directions. The carbonyl 0(22) prefers to bind to the K + ion rather than take part in the formation of hydrogen bonds usually observed in carboxylic acid structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Details of the metabolism of alpha-terpineol by Pseudomonas incognita are presented. Degradation of alpha-terpineol by this organism resulted in the formation of a number of acidic and neutral metabolites. Among the acidic metabolites, beta-isopropyl pimelic acid, 1-hydroxy-4-isopropenyl-cyclohexane-1-carboxylic acid, 8-hydroxycumic acid, oleuropeic acid, cumic acid, and p-isopropenyl benzoic acid have been identified. Neutral metabolites identified were limonene, p-cymene-8-ol, 2-hydroxycineole, and uroterpenol. Cell-free extracts prepared from alpha-terpineol adapted cells were shown to convert alpha-terpineol, p-cymene-8-ol, and limonene to oleuropeic acid, 8-hydroxycumic acid, and perillic acid, respectively, in the presence of NADH. The same cell-free extract contained NAD+ -specific dehydrogenase(s) which converted oleuropyl alcohol, p-cymene-7,8-diol, and perillyl alcohol to their corresponding 7-carboxy acids. On the basis of various metabolites isolated from the culture medium, together with the supporting evidence obtained from enzymatic and growth studies, it appears that P. incognita degrades alpha-terpineol by at least three different routes. While one of the pathways seems to operate via oleuropeic acid, a second may be initiated through the aromatization of alpha-terpineol. The third pathway may involve the formation of limonene from alpha-terpineol and its further metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of Pseudomonas incognita to metabolize some structurally modified acyclic monoterpenes was tested. The 6,7 double bond was found essential for these compounds to serve as a substrate for this organism, whereas the same was not true with the 1,2 double bond. Metabolism of dihydrolinalyl acetate by this strain yielded dihydrolinalool, dihydrolinalool-8-carboxylic acid, dihydrolinalyl acetate-8-carboxylic acid, and 4-acetoxy-4-methyl hexanoic acid. A cell-free extract prepared from dihydrolinalyl acetate grown cells transformed dihydrolinalyl acetate into dihydrolinalool and dihydrolinalool-8-carboxylic acid. Based on the identification of various metabolites isolated from the culture medium, and on growth and manometric studies carried out with the isolated metabolites as well as with related synthetic analogs, probable pathways for the biodegradation of dihydrolinalyl acetate are presented.