827 resultados para Thermal dependences
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly, however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
Resumo:
Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.
Resumo:
Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.
Resumo:
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by the Mechanistic-Empirical Pavement Design Guide (MEPDG). In this project, a literature review was conducted to determine the factors that affect thermal properties of concrete and the existing prediction equations for CTE and thermal conductivity of concrete. CTE tests were performed on various lab and field samples of portland cement concrete (PCC) at the Iowa Department of Transportation and Iowa State University. The variations due to the test procedure, the equipment used, and the consistency of field batch materials were evaluated. The test results showed that the CTE variations due to test procedure and batch consistency were less than 5%, and the variation due to the different equipment was less than 15%. Concrete CTE values were significantly affected by different types of coarse aggregate. The CTE values of Iowa concrete made with limestone+graval, quartzite, dolomite, limestone+dolomite, and limestone were 7.27, 6.86, 6.68, 5.83, and 5.69 microstrain/oF (13.08, 12.35, 12.03, 10.50, and 10.25 microstrain/oC), respectively, which were all higher than the default value of 5.50 microstrain/oF in the MEPDG program. The thermal conductivity of a typical Iowa PCC mix and an asphalt cement concrete (ACC) mix (both with limestone as coarse aggregate) were tested at Concrete Technology Laboratory in Skokie, Illinois. The thermal conductivity was 0.77 Btu/hr•ft•oF (1.33 W/m•K) for PCC and 1.21 Btu/hr•ft•oF (2.09 W/m•K) for ACC, which are different from the default values (1.25 Btu/hr•ft•oF or 2.16 W/m•K for PCC and 0.67 Btu/hr•ft•oF or 1.16 W/m•K for ACC) in the MEPDG program. The investigations onto the CTE of ACC and the effects of concrete materials (such as cementitious material and aggregate types) and mix proportions on concrete thermal conductivity are recommended to be considered in future studies.
Resumo:
Rate of metabolism and body temperature were studied between -6°C and 38°C in the common pipistrelle bat Pipistrellus pipistrellus (Vespertilionidae), a European species lying close to the lower end of the mammalian size range (body mass 4.9±0.8g, N=28). Individuals maintained only occasionally a normothermic body temperature averaging 35.4±1.1°C (N=4) and often showed torpor during metabolic runs. The thermoneutral zone was found above 33°C, and basal rate of metabolism averaged 7.6±0.8mL O(2)h(-1) (N=28), which is 69% of the value predicted on the basis of body mass. Minimal wet thermal conductance was 161% of the expected value. During torpor, the rate of metabolism was related exponentially to body temperature with a Q(10) value of 2.57. Torpid bats showed intermittent ventilation, with the frequency of ventilatory cycles increasing exponentially with body temperature. Basal rate of metabolism (BMR) varied significantly with season and body temperature, but not with body mass. It was lower before the hibernation period than during the summer. The patterns observed are generally consistent with those exhibited by other vespertilionids of temperate regions. However, divergences occur with previous measurements on European pipistrelles, and the causes of the seasonal variation in BMR, which has only rarely been searched for among vespertilionids, remain to be examined.
Resumo:
The thermal properties of concrete materials, such as coeffi cient of thermal expansion (CTE), thermal conductivity, and heat capacity, are required by the MEPDG program as the material inputs for pavement design. However, a limited amount of test data is available on the thermal properties of concrete in Iowa. The default values provided by the MEPDG program may not be suitable for Iowa concrete, since aggregate characteristics have signifi cant infl uence on concrete thermal properties.
Resumo:
This paper introduces a nonlinear measure of dependence between random variables in the context of remote sensing data analysis. The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel method for evaluating statistical dependence. HSIC is based on computing the Hilbert-Schmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is very easy to compute and has good theoretical and practical properties. We exploit the capabilities of HSIC to explain nonlinear dependences in two remote sensing problems: temperature estimation and chlorophyll concentration prediction from spectra. Results show that, when the relationship between random variables is nonlinear or when few data are available, the HSIC criterion outperforms other standard methods, such as the linear correlation or mutual information.
Resumo:
We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their interactions with other excitations. We review numerical results for the relaxation of breathers in Fermi¿Pasta¿Ulam arrays, with a specific focus on the different relaxation channels and their dependence on the interparticle interactions, dimensionality, initial condition, and system parameters
Resumo:
The magnetically induced splay Fréedericksz transition is reexamined to look for pattern forming phenomena slightly above or below criticality. By using our traditional scheme of stochastic nematodynamic equations, situations are, respectively, found of transient and permanent predominance of transversal periodicities (wave numbers) along the direction perpendicular to the initial orientation within the sample. The relevance of these predictions in relation with recent observations in the electrically driven splay Fréedericksz transition, and in general with other pattern forming phenomena, is stressed.