906 resultados para Thermal and photochemical transformations
Resumo:
We know that classical thermodynamics even out of equilibrium always leads to stable situation which means degradation and consequently d sorder. Many experimental evidences in different fields show that gradation and order (symmetry breaking) during time and space evolution may appear when maintaining the system far from equilibrium. Order through fluctuations, stochastic processes which occur around critical points and dissipative structures are the fundamental background of the Prigogine-Glansdorff and Nicolis theory. The thermodynamics of macroscopic fluctuations to stochastic approach as well as the kinetic deterministic laws allow a better understanding of the peculiar fascinating behavior of organized matter. The reason for the occurence of this situation is directly related to intrinsic non linearities of the different mechanisms responsible for the evolution of the system. Moreover, when dealing with interfaces separating two immiscible phases (liquid - gas, liquid -liquid, liquid - solid, solid - solid), the situation is rather more complicated. Indeed coupling terms playing the major role in the conditions of instability arise from the peculiar singular static and dynamic properties of the surface and of its vicinity. In other words, the non linearities are not only intrinsic to classical steps involving feedbacks, but they may be imbedded with the non-autonomous character of the surface properties. In order to illustrate our goal we discuss three examples of ordering in far from equilibrium conditions: i) formation of chemical structures during the oxidation of metals and alloys; ii) formation of mechanical structures during the oxidation of metals iii) formation of patterns at a solid-liquid moving interface due to supercooling condition in a melt of alloy. © 1984, Walter de Gruyter. All rights reserved.
Resumo:
In this study, thermal, exergetic analysis and performance evaluation of seawater and fresh wet cooling tower and the effect of parameters on its performance is investigated. With using of energy and mass balance equations, experimental results, a mathematical model and EES code developed. Due to lack of fresh water, seawater cooling is interesting choice for future of cooling, so the effect of seawater in the range of 1gr/kg to 60gr/kg for salinity on the performance characteristics like air efficiency, water efficiency, output water temperature of cooling tower, flow of the exergy, and the exergy efficiency with comparison with fresh water examined. Decreasing of air efficiency about 3%, increasing of water efficiency about 1.5% are some of these effects. Moreover with formation of fouling the performance of cooling tower decreased about 15% which this phenomena and its effects like increase in output water temperature and tower excess volume has been showed and also accommodate with others work. Also optimization for minimizing cost, maximizing air efficiency, and minimizing exergy destruction has been done, results showed that optimization on minimizing the exergy destruction has been satisfy both minimization of the cost and the maximization of the air efficiency, although it will not necessarily permanent for all inputs and optimizations. Validation of this work is done by comparing computational results and experimental data which showed that the model have a good accuracy.
Resumo:
The aim of this thesis is to test the ability of some correlative models such as Alpert correlations on 1972 and re-examined on 2011, the investigation of Heskestad and Delichatsios in 1978, the correlations produced by Cooper in 1982, to define both dynamic and thermal characteristics of a fire induced ceiling-jet flow. The flow occurs when the fire plume impinges the ceiling and develops in the radial direction of the fire axis. Both temperature and velocity predictions are decisive for sprinklers positioning, fire alarms positions, detectors (heat, smoke) positions and activation times and back-layering predictions. These correlative models will be compared with a 3D numerical simulation software CFAST. For the results comparison of temperature and velocity near the ceiling. These results are also compared with a Computational Fluid Dynamics (CFD) analysis, using ANSYS FLUENT.
Resumo:
June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.
Resumo:
In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi–walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbons’ Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International’s FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through–plane and in–plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in–plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through–plane and in–plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single–filler formulations. For thermal conductivity, Nielsen’s model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen’s model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.
Resumo:
Fulgides and fulgimides are important organic photochromic compounds and can switch between the open forms and the closed forms with light. The 3-indolylfulgides and 3-indolylfulgimides exhibit promising photochromic properties and have great potential in optical memory devices, optical switches and biosensors. Copolymers containing 3-indolylfulgides/indolylfulgimides synthesized via free radical polymerizations increase conformation changes and allow the photochromic compounds to be uniformly distributed in the polymer matrix. A trifluoromethyl 3-indolylfulgide and two trifluoromethyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization with methyl methacrylate provided two linear copolymers or a cross-linked copolymer. The properties of the monomeric fulgide/fulgimides and copolymers in toluene or as thin films were characterized. In general, the photochromic monomers and copolymers revealed similar photochromic properties and exhibited good thermal and photochemical stability. All compounds absorb visible light in both open forms and closed forms. The closed form copolymers were more stable than the open form copolymers and showed little or no degradation after 400 h. The photochemical degradation rate was less than 0.03% per cycle. In films, conformational restrictions were observed for the open forms suggesting that the preparation of films from the closed forms is advantageous. Two novel methyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization of acrylamide with the methyl indolylfulgimides or the trifluoromethyl indolylfulgimides yielded two aqueous soluble linear copolymers and two photochromic hydrogels. The closed form copolymers containing trifluoromethyl indolylfulgimides were hydrolyzed in aqueous solution by replacing the trifluoromethyl group with a carboxylic acid group. The resulting carboxylic copolymers were also photochromic. The copolymers containing methyl fulgimides were stable in aqueous solutions and did not hydrolyze. Both methyl and carboxylic copolymers exhibited good stability in aqueous solutions. In general, the open form copolymers were more stable than the closed form copolymers, and the copolymers revealed better stability in acidic solution than neutral solution. The linear copolymers displayed better photochemical stability in neutral solution and degraded up to 22% after 105 cycles. In contrast, the hydrogels showed enhanced fatigue resistance in acidic condition and underwent up to 60 cycles before degrading 24%.
Resumo:
We quantify the evolution of the stellar mass functions (SMFs) of star-forming and quiescent galaxies as a function of morphology from z ∼ 3 to the present. Our sample consists of ∼50 000 galaxies in the CANDELS fields (∼880 arcmin^2), which we divide into four main morphological types, i.e. pure bulge-dominated systems, pure spiral disc-dominated, intermediate two-component bulge+disc systems and irregular disturbed galaxies. At z ∼ 2, 80 per cent of the stellar mass density of star-forming galaxies is in irregular systems. However, by z ∼ 0.5, irregular objects only dominate at stellar masses below 10^9 M_⊙. A majority of the star-forming irregulars present at z ∼ 2 undergo a gradual transformation from disturbed to normal spiral disc morphologies by z ∼ 1 without significant interruption to their star formation. Rejuvenation after a quenching event does not seem to be common except perhaps for the most massive objects, because the fraction of bulge-dominated star-forming galaxies with M^*/M_⊙ > 10^10.7 reaches 40 per cent at z < 1. Quenching implies the presence of a bulge: the abundance of massive red discs is negligible at all redshifts over 2 dex in stellar mass. However, the dominant quenching mechanism evolves. At z > 2, the SMF of quiescent galaxies above M^* is dominated by compact spheroids. Quenching at this early epoch destroys the disc and produces a compact remnant unless the star-forming progenitors at even higher redshifts are significantly more dense. At 1 < z < 2, the majority of newly quenched galaxies are discs with a significant central bulge. This suggests that mass quenching at this epoch starts from the inner parts and preserves the disc. At z < 1, the high-mass end of the passive SMF is globally in place and the evolution mostly happens at stellar masses below 10^10 M_⊙. These low-mass galaxies are compact, bulge-dominated systems, which were environmentally quenched: destruction of the disc through ram-pressure stripping is the likely process.
Resumo:
Physical and chemical properties of low-valent platinum dimers, namely [Pt_2(P_2O_5H_2)4]^(4-) and Pt_2(µ-dppm)_2Cl_2, have been investigated using a variety of structural and spectroscopic techniques.
Platinum(II) d^8-d^8 dimers have been shown to exhibit much thermal and photochemical reactivity. Chapter 2 describes studies aimed at elucidating the excited state reduction potenetial of [Pt_2(P_2O_5H_2)4]^(4-), Pt_2, in organic media. By conducting excited state electron transfer studies using derivatized pyridiniums and benzophenones, the excited state reduction potential has been estimated to be ~2 V. The Pt_2 complex undergoes partial oxidation to form Pt(II,III) linear chains. Chapter 3 describes the structural and spectroscopic techniques used to determine the translational symmetries of these [Pt_2(P_2O_5H_2)4]^(4-) (X = Cl, Br), Pt_2X, chains. Pt_2Br has been found to be intermediate between (AAB)_n and (AABCCB)_n, while, Pt_2Cl is of (AABCCB)_n translational symmetry. Investigations into the electronic transitions of Pt_2Cl and Pt_2Br were conducted using high pressure techniques and are presented in Chapter 4. The Pt_2X electronic spectrum exhibits bands attributable to the reduced Pt2 complex and the oxidized Pt_2X_2 complex [Pt_2(P_2O_5H_2)4]^(4-) along with an intervalence charge-tranfer band characteristic of a mixed-valence solid.
Photophysical investigations of a new luminescent chromophore, Pt_2(µ-dppm)_2Cl_2, a d^9-d^9 dimer, and its analogs are described in Chapter 5. The absorption band directly responsible for the observed emission is believed to be very weak and, as of yet, unobserved. Attempts to determine the spin multiplicty and approximate energy of this unobserved transition are described in Chapter 6. Excited-state energy transfer studies indicate that this absorption band is a triplet transition at -13,000 cm^(-1). Although, the Pt_2(µ-dppm)_2Cl_2 excited state is non-luminescent in fluid solution, it has been shown to undergo thermal electron transfer to tetracyanoethylene and photoinduced electron transfer to methylviologen. These experiments are presented in Chapter 7. Preliminary studies, described in Chapter 8, of non-bridged d^9-d^9 platinum(I) dimers have shown that [Pt_2(CNCH_3)_6]^(2+) serves as a versatile precursor in the synthesis of new d^8-d^8 A-frame complexes.
Resumo:
Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.
Resumo:
In view of the vast potential of micellar systems as media in which reactions may be conducted, a clear understanding of the structure of micelles is essential. The unique features of micelles and how these have been utilized to catalyse and control photochemical reactivity are briefly surveyed here. Micellar media, when used for chemical reactions, exhibit features that are completely different from those of ordinary non-aqueous solvents. A thermal or photochemical reaction conducted in micellar media is influenced by the effects of the micellar environment which result in control and/or modification of reactivity. The salient features of micelles that influence the photochemical reactivity are cage and microviscosity effects, localization and compartmentalization effects, pre-orientational, polarity and counterion effects.
Resumo:
In this thesis, we report our endeavours in the synthesis of a few polycyclic compounds. We were interested in the synthesis of a few bicyclic compounds designed to undergo interesting photochemical transformations including tripletmediated di-π-methane rearrangement and/or competing singlet-mediated electrocyclic reactions. Our target molecules have "inbuilt" structural features which will potentially alter the photochemistry of the substrate under consideration.The present investigation was undertaken to test our hypothesis on selective intramolecular quenching of singlet or triplet excited states of molecules.We adopted Dies-Alder reaction for the synthesis of several of the bicyclic compounds we were interested in. Some of the precursor dienes synthesised by us are capable of undergoing intramolecular cycloaddition reactions as well. So, it was important to delineate the conditions and structural features that will enable a particular molecule to undergo intermolecular and intramolecular Dies-Alder reaction when treated with a suitable dienophile.Though, the main focus of this thesis is on the synthesis of bicyclic and tricyclic systems capable of undergoing di-π-methane rearrangement, in the last chapter of this thesis, we describe our findings on the synthesis of a few dispirocompounds. These systems were encountered as unexpected products in the attempted synthesis of novel dibenzoylalkene-type systems. Consequently, a brief survey on the synthesis and transformations of dibenzoylalkenes is also included as an integral part of this thesis.
Resumo:
Atrazine and 2,4-D are common herbicides used for crop, lawn, and rangeland management. Photochemical degradation has been proposed as one safe and efficient remediation strategy for both 2,4-D and Atrazine. In the presence of iron(llI) and hydrogen peroxide these herbicides decay by both thermal and light induced oxidation. Past studies have focused primarily on sun light as an energy source. This work provides a mechanistic description of herbicide degradation incorporating intermediate degradation products produced in the dark and under well-defined light conditions.
Resumo:
[1] Photochemical and microbial transformations of DOM were evaluated in headwater streams draining forested and human-modified lands (pasture, cropland, and urban development) by laboratory incubations. Changes in DOC concentrations, DOC isotopic signatures, and DOM fluorescence properties were measured to assess the amounts, sources, ages, and properties of reactive and refractory DOM under the influence of photochemistry and/or bacteria. DOC in streams draining forest-dominated watersheds was more photoreactive than in streams draining mostly human-modified watersheds, possibly due to greater contributions of terrestrial plant-derived DOC and lower amounts of prior light exposure in forested streams. Overall, the percentage of photoreactive DOC in stream waters was best predicted by the relative content of terrestrial fluorophores. The bioreactivity of DOC was similar in forested and human-modified streams, but variations were correlated with temperature and may be further controlled by the diagenetic status of organic matter. Alterations to DOC isotopes and DOM fluorescence properties during photochemical and microbial incubations were similar between forested and human-modified streams and included (1) negligible effects of microbial alteration on DOC isotopes and DOM fluorescence properties, (2) selective removal of 13C-depleted and 14C-enriched DOC under the combined influence of photochemical and microbial processes, and (3) photochemical alteration of DOM resulting in a preferential loss of terrestrial humic fluorescence components relative to microbial fluorescence components. This study provides a unique comparison of DOC reactivity in a regional group of streams draining forested and human-modified watersheds and indicates the importance of land use on the photoreactivity of DOC exported from upstream watersheds.
Resumo:
Glass transition temperature of spaghetti sample was measured by thermal and rheological methods as a function of water content.