742 resultados para Textile fabrics.
Resumo:
Azo dyes are extensively used for coloring textiles, paper, food, leather, drink, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10 - 15% of dyes used for coloring textiles might be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can be readly reduced by a number of chemical and biological reducing systems. Biological treatment is advantageous over physical and chemical method as result of its low cost and little disturbance to the environment. This research focuses on the utilization of Aspergillus oryzae, to remove some kinds of azo dyes from aqueous solutions. The fungi, physically induced in its paramorphogenic form (called, pellets), were used in the dyes biosorption studies with both non autoclave and autoclaved hyphas, at differents pH values. Thus the goals are the removal of dyes by biosorption and the decrease of its toxicity.
Assays of cytotoxicity and mutagenicity as a tool for assessment of consumer exposed to textile dyes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A label-free impedimetric immunosensor for direct determination of the textile dye Disperse Orange 1
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There are two general categories of furniture fabrics: those meant for use as slipcovers, and those for use as upholstery. Slipcovers are designed to fit snugly and yet be removable for cleaning. Upholstery fabrics are generally heavier; they are nailed or stapled directly to the furniture's frame or bonded to the padding. They are not removable. This publication is for persons considering an investment in upholstered furniture or upholstery fabric. It covers basic information on fabric components and construction to help the reader make a wise purchase.
Resumo:
Textile Technology: The sun-blocking properties of a textile are enhanced when a dye, pigment, delustrant, or ultraviolet absorber finish is present that absorbs ultraviolet radiation and blocks its transmission through a fabric to the skin. For this reason, dyed fabrics provide better sun protection than bleached fabrics. Since naturally-colored cottons contain pigments that produce shades ranging from light green to tan and brown, it seemed reasonable to postulate that they would provide better sun protection than conventional bleached cotton, and that natural pigments might prove more durable to laundering and light exposure than dyes, but there is no published research on the ultraviolet transmission values for naturally-pigmented cottons. The purpose of this study was to determine the ultraviolet protection (UPF) values of naturally-pigmented cotton in three shades (green, tan, and brown), and the effect of light exposure and laundering on the sun-blocking properties of naturally-pigmented cotton. Naturally-pigmented cotton specimens were exposed to xenon light and accelerated laundering, ultraviolet transmission values measured, and UPF values calculated following light exposure and laundering. The naturally-pigmented cottons exhibited significantly higher UPF values than conventional cotton (bleached or unbleached). Although xenon light exposure and laundering caused some fading, the UPF values of naturally-pigmented cotton continue to be sufficiently high so that all three shades continue to provide good sun protection after the equivalent of 5 home launderings and 80 American Association of Textile Chemists and Colorists fading units (AFUs) of xenon light exposure.
Resumo:
Cyanobacteria are widely distributed in the environment and may be an effective and economic alternative for removing dyes from textile industry effluents. The present work investigated the potential of six cyanobacterial strains in decolorizing eleven types of textile dyes. The maximum absorbance of each dye was verified using a spectrophotometer. Mass spectrometry was used to verify the removal and possible degradation of dyes by the cyanobacteria. The results showed that all of the evaluated cyanobacteria were able to remove indigo, palanil yellow, indanthrene yellow, indanthrene blue, dispersol blue, indanthrene red and dispersol red by more than 50%. The Brazilian isolate Phormidium sp. CENA135 was able to decolorize and completely remove indigo blue BANN 30. This study confirmed the capacity of cyanobacteria to decolorize and possibly to structurally degrade different textile dyes, suggesting the possibility of their application in bioremediation studies.
Resumo:
Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 +/- 3-Ma-old Piracaia pluton (NW of Sao Paulo State, southern Brazil). This intrusion is roughly elliptical (similar to 32 km(2)), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.
Resumo:
The Apiai gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10(-2) SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P >= 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P <= 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiai gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.
Resumo:
—This paper presents a textile patch antenna designed for WBAN applications at 2.45 GHz ISM band. The antenna uses denim as substrate and conductive fabric for the ground plane and radiator layers. The main purpose of this paper is to analyze the influence of typical deviation of denim properties and patch radiator dimensions on the performance of the antenna. The parameters considered in the analysis are the relative permittivity and thickness of denim and the width and length of the rectangular patch radiator. The dependence of the central operation frequency of the antenna on those parameters was studied using the antenna reflection coefficient obtained from EM simulations. Rules of thumb for one-shot design were derived and applied to design a rectangular patch antenna. An antenna prototype was fabricated and measured, demonstrating a 10 dB impedance band of 4.8 % centered at 2.45 GHz, in good agreement with simulated results
Resumo:
[EN]Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly.