953 resultados para Temperature-dependent Sex Determination
Resumo:
Physiological studies with excised stem segments have implicated the plant hormone indole-3-acetic acid (IAA or auxin) in the regulation of cell elongation. Supporting evidence from intact plants has been somewhat more difficult to obtain, however. Here, we report the identification and characterization of an auxin-mediated cell elongation growth response in Arabidopsis thaliana. When grown in the light at high temperature (29°C), Arabidopsis seedlings exhibit dramatic hypocotyl elongation compared with seedlings grown at 20°C. This temperature-dependent growth response is sharply reduced by mutations in the auxin response or transport pathways and in seedlings containing reduced levels of free IAA. In contrast, mutants deficient in gibberellin and abscisic acid biosynthesis or in ethylene response are unaffected. Furthermore, we detect a corresponding increase in the level of free IAA in seedlings grown at high temperature, suggesting that temperature regulates auxin synthesis or catabolism to mediate this growth response. Consistent with this possibility, high temperature also stimulates other auxin-mediated processes including auxin-inducible gene expression. Based on these results, we propose that growth at high temperature promotes an increase in auxin levels resulting in increased hypocotyl elongation. These results strongly support the contention that endogenous auxin promotes cell elongation in intact plants.
Resumo:
Biological speciation ultimately results in prezygotic isolation—the inability of incipient species to mate with one another–but little is understood about the selection pressures and genetic changes that generate this outcome. The genus Chlamydomonas comprises numerous species of unicellular green algae, including numerous geographic isolates of the species C. reinhardtii. This diverse collection has allowed us to analyze the evolution of two sex-related genes: the mid gene of C. reinhardtii, which determines whether a gamete is mating-type plus or minus, and the fus1 gene, which dictates a cell surface glycoprotein utilized by C. reinhardtii plus gametes to recognize minus gametes. Low stringency Southern analyses failed to detect any fus1 homologs in other Chlamydomonas species and detected only one mid homolog, documenting that both genes have diverged extensively during the evolution of the lineage. The one mid homolog was found in C. incerta, the species in culture that is most closely related to C. reinhardtii. Its mid gene carries numerous nonsynonymous and synonymous codon changes compared with the C. reinhardtii mid gene. In contrast, very high sequence conservation of both the mid and fus1 sequences is found in natural isolates of C. reinhardtii, indicating that the genes are not free to drift within a species but do diverge dramatically between species. Striking divergence of sex determination and mate recognition genes also has been encountered in a number of other eukaryotic phyla, suggesting that unique, and as yet unidentified, selection pressures act on these classes of genes during the speciation process.
Resumo:
The protein Sex-lethal (SXL) controls pre-mRNA splicing of two genes involved in Drosophila sex determination: transformer (tra) and the Sxl gene itself. Previous in vitro results indicated that SXL antagonizes the general splicing factor U2AF65 to regulate splicing of tra. In this report, we have used transgenic flies expressing chimeric proteins between SXL and the effector domain of U2AF65 to study the mechanisms of splicing regulation by SXL in vivo. Conferring U2AF activity to SXL relieves its inhibitory activity on tra splicing but not on Sxl splicing. Therefore, antagonizing U2AF65 can explain tra splicing regulation both in vitro and in vivo, but this mechanism cannot explain splicing regulation of Sxl pre-mRNA. These results are a direct proof that Sxl, the master regulatory gene in sex determination, has multiple and separable activities in the regulation of pre-mRNA splicing.
Resumo:
In ciliate protists, sex involves the temporary joining of two cells of compatible mating type, followed by meiosis and exchange of gametic nuclei between conjugants. Reproduction is by asexual binary fission following conjugation. For the many ciliates with fixed multiple mating types, frequency-dependent sex-ratio theory predicts equal frequencies of mating types, if sex is common in nature. Here, we report that in natural populations of Tetrahymena thermophila sexually immature cells, indicative of recent conjugation, are found from spring through fall. In addition, the seven mating types occur in approximately equal frequencies, and these frequencies appear to be maintained by interaction between complex, multiple mat alleles and environmental conditions during conjugation. Such genotype-environment interaction determining mating type frequency is rare among ciliates.
Resumo:
From an extract of Drosophila melanogaster head homogenates, a membrane fraction can be isolated that has the same sedimentation properties as vertebrate synaptic vesicles and contains Drosophila synaptotagmin. The fraction disappears from homogenates of temperature-sensitive (ts) mutant shibire(ts1) (shi(ts1)) flies paralyzed by exposure to non-permissive temperatures, and reappears on return to permissive temperatures. Since reversible, temperature-dependent depletion of synaptic vesicles is known to occur in shibire(ts1) flies, we conclude that the fraction we have identified contains synaptic vesicles. We have examined the fate of synaptic vesicle membrane proteins in shibire flies at nonpermissive temperatures and found that all of these vesicle antigens are transferred to rapidly sedimenting membranes and codistribute with a plasma membrane marker by both glycerol velocity and metrizamide density sedimentation and by confocal microscopy. Three criteria were used to establish that other neuron-specific antigens--neuronal synaptobrevin and cysteine-string proteins--are legitimate components of synaptic vesicles: cosedimentation with Drosophila synaptotagmin, immunoadsorption, and disappearance of these antigens from the vesicle fractions in paralyzed shibire flies.
Resumo:
L’allevamento in cattività dei rettili è in costante crescita negli ultimi anni e richiede conoscenze mediche sempre più specialistiche per far fronte ai numerosi problemi legati a questi animali. Il corretto approccio medico prevede una profonda conoscenza delle specie prese in esame dal momento che la maggior parte delle problematiche riproduttive di questi animali sono legate ad una non corretta gestione dei riproduttori. L’apparato riproduttore dei rettili è estremamente vario a seconda delle specie prese in considerazione. Sauri ed ofidi possiedono due organi copulatori denominati emipeni e posizionati alla base della coda caudalmente alla cloaca che vengono estroflessi alternativamente durante l’accoppiamento per veicolare lo spera all’interno della cloaca della femmina. In questi animali il segmento posteriore renale è chiamato segmento sessuale, perché contribuisce alla formazione del fluido seminale. Tale porzione, durante la stagione dell’accoppiamento, diventa più voluminosa e cambia drasticamente colore, tanto che può essere confusa con una manifestazione patologica. I cheloni al contrario possiedono un unico pene che non viene coinvolto nella minzione. In questi animali. I testicoli sono due e sono situati all’interno della cavità celomatica in posizione cranioventrale rispetto ai reni. I testicoli possono variare notevolmente sia come forma che come dimensione a seconda del periodo dell’anno. Il ciclo estrale dei rettili è regolato, come pure nei mammiferi, dagli ormoni steroidei. La variazione di questi ormoni a livello ematico è stata studiato da diversi autori con il risultato di aver dimostrato come la variazione dei dosaggi degli stessi determini l’alternanza delle varie fasi del ciclo riproduttivo. La relazione tra presenza di uova (anche placentari) ed alti livelli di progesterone suggerisce che questo ormone gioca un ruolo importante nelle riproduzione delle specie ovipare per esempio stimolando la vascolarizzazione degli ovidutti durante i tre mesi in cui si ha lo sviluppo delle uova. Il 17-beta estradiolo è stato descritto come un ormone vitellogenico grazie alla sua capacità di promuovere lo sviluppo dei follicoli e la formazione di strati protettivi dell’uovo. L’aumento del livello di estradiolo osservato esclusivamente nelle femmine in fase vitellogenica è direttamente responsabile della mobilizzazione delle riserve materne in questa fase del ciclo. Va sottolineato come il progesterone sia in effetti un antagonista dell’estradiolo, riducendo la vitellogenesi e intensificando gli scambi materno fetali a livello di ovidutto. Le prostaglandine (PG) costituiscono un gruppo di molecole di origine lipidica biologicamente attive, sintetizzate sotto varie forme chimiche. Sono noti numerosi gruppi di prostaglandine ed è risputo che pesci, anfibi, rettili e mammiferi sintetizzano una o più prostaglandine partendo da acidi grassi precursori. Queste sostanze anche nei rettili agiscono sulla mucosa dell’utero aumentandone le contrazioni e sui corpi lutei determinandone la lisi. La maturità sessuale dei rettili, dipende principalmente dalla taglia piuttosto che dall’età effettiva dell’animale. In cattività, l’alimentazione e le cure dell’allevatore, possono giocare un ruolo fondamentale nel raggiungimento della taglia necessaria all’animale per maturare sessualmente. Spesso, un animale d’allevamento raggiunge prima la maturità sessuale rispetto ai suoi simili in natura. La maggior parte dei rettili sono ovipari, ovvero depongono uova con guscio sulla sabbia o in nidi creati appositamente. La condizione di ovoviviparità è riscontrabile in alcuni rettili. Le uova, in questo caso, vengono ritenute all’interno del corpo, fino alla nascita della progenie. Questa può essere considerata una strategia evolutiva di alcuni animali, che in condizioni climatiche favorevoli effettuano l’ovo deposizione, ma se il clima non lo permette, ritengono le uova fino alla nascita della prole. Alcuni serpenti e lucertole sono vivipari, ciò significa che l’embrione si sviluppa all’interno del corpo dell’animale e che è presente una placenta. I piccoli fuoriescono dal corpo dell’animale vivi e reattivi. La partenogenesi è una modalità di riproduzione asessuata, in cui si ha lo sviluppo dell’uovo senza che sia avvenuta la fecondazione. Trenta specie di lucertole e alcuni serpenti possono riprodursi con questo metodo. Cnemidophorus uniparens, C. velox e C. teselatus alternano la partenogenesi a una riproduzione sessuata, a seconda della disponibilità del maschio. La maggior parte dei rettili non mostra alcuna cura materna per le uova o per i piccoli che vengono abbandonati al momento della nascita. Esistono tuttavia eccezioni a questa regola generale infatti alcune specie di pitoni covano le uova fino al momento della schiusa proteggendole dai predatori e garantendo la giusta temperatura e umidità. Comportamenti di guardia al nido sono poi stati documentati in numerosi rettili, sia cheloni che sauri che ofidi. Nella maggior parte delle tartarughe, la riproduzione è legata alla stagione. Condizioni favorevoli, possono essere la stagione primaverile nelle zone temperate o la stagione umida nelle aree tropicali. In cattività, per riprodurre queste condizioni, è necessario fornire, dopo un periodo di ibernazione, un aumento del fotoperiodo e della temperatura. L’ atteggiamento del maschio durante il corteggiamento è di notevole aggressività, sia nei confronti degli altri maschi, con i quali combatte copiosamente, colpendoli con la corazza e cercando di rovesciare sul dorso l’avversario, sia nei confronti della femmina. Infatti prima della copulazione, il maschio insegue la femmina, la sperona, la morde alla testa e alle zampe e infine la immobilizza contro un ostacolo. Il comportamento durante la gravidanza è facilmente riconoscibile. La femmina tende ad essere molto agitata, è aggressiva nei confronti delle altre femmine e inizia a scavare buche due settimane prima della deposizione. La femmina gravida costruisce il nido in diverse ore. Scava, con gli arti anteriori, buche nel terreno e vi depone le uova, ricoprendole di terriccio e foglie con gli arti posteriori. A volte, le tartarughe possono trattenere le uova, arrestando lo sviluppo embrionale della prole per anni quando non trovano le condizioni adatte a nidificare. Lo sperma, inoltre, può essere immagazzinato nell’ovidotto fino a sei anni, quindi la deposizione di uova fertilizzate può verificarsi senza che sia avvenuto l’accoppiamento durante quel ciclo riproduttivo. I comportamenti riproduttivi di tutte le specie di lucertole dipendono principalmente dalla variazione stagionale, correlata al cambiamento di temperatura e del fotoperiodo. Per questo, se si vuole far riprodurre questi animali in cattività, è necessario valutare per ogni specie una temperatura e un’illuminazione adeguata. Durante il periodo riproduttivo, un atteggiamento caratteristico di diverse specie di lucertole è quello di riprodurre particolari danze e movimenti ritmici della testa. In alcune specie, possiamo notare il gesto di estendere e retrarre il gozzo per mettere in evidenza la sua brillante colorazione e richiamare l’attenzione della femmina. L’aggressività dei maschi, durante la stagione dell’accoppiamento, è molto evidente, in alcuni casi però, anche le femmine tendono ad essere aggressive nei confronti delle altre femmine, specialmente durante l’ovo deposizione. La fertilizzazione è interna e durante la copulazione, gli spermatozoi sono depositati nella porzione anteriore della cloaca femminile, si spostano successivamente verso l’alto, dirigendosi nell’ovidotto, in circa 24-48 ore; qui, fertilizzano le uova che sono rilasciate nell’ovidotto dall’ovario. Negli ofidi il corteggiamento è molto importante e i comportamenti durante questa fase possono essere diversi da specie a specie. I feromoni specie specifici giocano un ruolo fondamentale nell’attrazione del partner, in particolar modo in colubridi e crotalidi. La femmina di queste specie emette una traccia odorifera, percepita e seguita dal maschio. Prima dell’accoppiamento, inoltre, il maschio si avvicina alla femmina e con la sua lingua bifida o con il mento, ne percorre tutto il corpo per captare i feromoni. Dopo tale comportamento, avviene la copulazione vera e propria con la apposizione delle cloache; gli emipeni vengono utilizzati alternativamente e volontariamente dal maschio. Durante l’ovulazione, il serpente aumenterà di volume nella sua metà posteriore e contrazioni muscolari favoriranno lo spostamento delle uova negli ovidotti. In generale, se l’animale è oviparo, avverrà una muta precedente alla ovo deposizione, che avviene prevalentemente di notte. Gli spermatozoi dei rettili sono morfologicamente simili a quelli di forme superiori di invertebrati. La fecondazione delle uova, da parte di spermatozoi immagazzinati nel tratto riproduttivo femminile, è solitamente possibile anche dopo mesi o perfino anni dall’accoppiamento. La ritenzione dei gameti maschili vitali è detta amphigonia retardata e si ritiene che questa caratteristica offra molti benefici per la sopravvivenza delle specie essendo un adattamento molto utile alle condizioni ambientali quando c’è una relativa scarsità di maschi conspecifici disponibili. Nell’allevamento dei rettili in cattività un accurato monitoraggio dei riproduttori presenta una duplice importanza. Permette di sopperire ad eventuali errori di management nel caso di mancata fertilizzazione e inoltre permette di capire quale sia il grado di sviluppo del prodotto del concepimento e quindi di stabilire quale sia il giorno previsto per la deposizione. Le moderne tecniche di monitoraggio e l’esperienza acquisita in questi ultimi anni permettono inoltre di valutare in modo preciso lo sviluppo follicolare e quindi di stabilire quale sia il periodo migliore per l’accoppiamento. Il dimorfismo sessuale nei serpenti è raro e anche quando presente è poco evidente. Solitamente nei maschi, la coda risulta essere più larga rispetto a quella della femmina in quanto nel segmento post-cloacale vi sono alloggiati gli emipeni. Il maschio inoltre, è generalmente più piccolo della femmina a parità di età. Molti cheloni sono sessualmente dimorfici sebbene i caratteri sessuali secondari siano poco apprezzabili nei soggetti giovani e diventino più evidenti dopo la pubertà. In alcune specie si deve aspettare per più di 10 anni prima che il dimorfismo sia evidente. Le tartarughe di sesso maschile tendono ad avere un pene di grosse dimensioni che può essere estroflesso in caso di situazioni particolarmente stressanti. I maschi sessualmente maturi di molte specie di tartarughe inoltre tendono ad avere una coda più lunga e più spessa rispetto alle femmine di pari dimensioni e la distanza tra il margine caudale del piastrone e l’apertura cloacale è maggiore rispetto alle femmine. Sebbene la determinazione del sesso sia spesso difficile nei soggetti giovani molti sauri adulti hanno dimorfismo sessuale evidente. Nonostante tutto comunque anche tra i sauri esistono molte specie come per esempio Tiliqua scincoides, Tiliqua intermedia, Gerrhosaurus major e Pogona vitticeps che anche in età adulta non mostrano alcun carattere sessuale secondario evidente rendendone molto difficile il riconoscimento del sesso. Per garantire un riconoscimento del sesso degli animali sono state messe a punto diverse tecniche di sessaggio che variano a seconda della specie presa in esame. L’eversione manuale degli emipeni è la più comune metodica utilizzata per il sessaggio dei giovani ofidi ed in particolare dei colubridi. I limiti di questa tecnica sono legati al fatto che può essere considerata attendibile al 100% solo nel caso di maschi riconosciuti positivi. L’eversione idrostatica degli emipeni esattamente come l’eversione manuale degli emipeni si basa sull’estroflessione di questi organi dalla base della coda, pertanto può essere utilizzata solo negli ofidi e in alcuni sauri. La procedura prevede l’iniezione di fluido sterile (preferibilmente soluzione salina isotonica) nella coda caudalmente all’eventuale posizione degli emipeni. Questa tecnica deve essere eseguita solo in casi eccezionali in quanto non è scevra da rischi. L’utilizzo di sonde cloacali è il principale metodo di sessaggio per gli ofidi adulti e per i sauri di grosse dimensioni. Per questa metodica si utilizzano sonde metalliche dello spessore adeguato al paziente e con punta smussa. Nei soggetti di genere maschile la sonda penetra agevolmente al contrario di quello che accade nelle femmine. Anche gli esami radiografici possono rendersi utili per il sessaggio di alcune specie di Varani (Varanus achanturus, V. komodoensis, V. olivaceus, V. gouldi, V. salvadorii ecc.) in quanto questi animali possiedono zone di mineralizzazione dei tessuti molli (“hemibacula”) che possono essere facilmente individuate nei maschi. Diversi studi riportano come il rapporto tra estradiolo e androgeni nel plasma o nel liquido amniotico sia un possibile metodo per identificare il genere sessuale delle tartarughe. Per effettuare il dosaggio ormonale, è necessario prelevare un campione di sangue di almeno 1 ml ad animale aspetto che rende praticamente impossibile utilizzare questo metodo di sessaggio nelle tartarughe molto piccole e nei neonati. L’ecografia, volta al ritrovamento degli emipeni, sembra essere un metodo molto preciso, per la determinazione del sesso nei serpenti. Uno studio compiuto presso il dipartimento di Scienze Medico Veterinarie dell’Università di Parma, ha dimostrato come questo metodo abbia una sensibilità, una specificità e un valore predittivo positivo e negativo pari al 100%. La radiografia con mezzo di contrasto e la tomografia computerizzata possono essere utilizzate nel sessaggio dei sauri, con buoni risultati. Uno studio, compiuto dal dipartimento di Scienze Medico Veterinarie, dell’Università di Parma, ha voluto mettere a confronto diverse tecniche di sessaggio nei sauri, tra cui l’ecografia, la radiografia con e senza mezzo di contrasto e la tomografia computerizzata con e senza mezzo di contrasto. I risultati ottenuti, hanno dimostrato come l’ecografia non sia il mezzo più affidabile per il riconoscimento degli emipeni e quindi del sesso dell’animale, mentre la radiografia e la tomografia computerizza con mezzo di contrasto siano tecniche affidabili e accurate in queste specie. Un metodo valido e facilmente realizzabile per il sessaggio dei cheloni anche prepuberi è la cistoscopia. In un recente studio la cistoscopia è stata effettuata su quindici cheloni deceduti e venticinque cheloni vivi, anestetizzati. In generale, questo metodo si è dimostrato non invasivo per le tartarughe, facilmente ripetibile in diversi tipi di tartarughe e di breve durata. Tra le principali patologie riproduttive dei rettili le distocie sono sicuramente quelle che presentano una maggior frequenza. Quando si parla di distocia nei rettili, si intendono tutte quelle situazioni in cui si ha una mancata espulsione e deposizione del prodotto del concepimento entro tempi fisiologici. Questa patologia è complessa e può dipendere da diverse cause. Inoltre può sfociare in malattie sistemiche a volte molto severe. Le distocie possono essere classificate in ostruttive e non ostruttive in base alle cause. Si parla di distocia ostruttiva quando si verificano delle condizioni per cui viene impedito il corretto passaggio delle uova lungo il tratto riproduttivo (Fig.13). Le cause possono dipendere dalla madre o dalle caratteristiche delle uova. Nel caso di distocia non ostruttiva le uova rinvenute sono solitamente di dimensioni normali e la conformazione anatomica della madre è fisiologica. L’eziologia è da ricercare in difetti comportamentali, ambientali e patologici. Non esistono sintomi specifici e patognomonici di distocia. La malattia diviene evidente e conclamata solamente in presenza di complicazioni. Gli approcci terapeutici possibili sono vari a seconda della specie animale e della situazione. Fornire un’area adeguata per la nidiata: se la distocia non è ostruttiva si può cercare di incoraggiare l’animale a deporre autonomamente le uova creando un idoneo luogo di deposizione. Il trattamento medico prevede la stimolazione della deposizione delle uova ritenute mediante l’induzione con ossitocina. L’ossitocina viene somministrata alle dosi di 1/3 UI/kg per via intramuscolare. Uno studio condotto presso l’Università veterinaria di Parma ha comparato le somministrazioni di ossitocina per via intramuscolare e per via intravenosa, confrontando le tempistiche con le quali incominciano le contrazioni e avviene la completa ovodeposizione e dimostrando come per via intravenosa sia possibile somministrare dosi più basse rispetto a quelle riportate solitamente in letteratura ottenendo comunque un ottimo risultato. Nel caso in cui il trattamento farmacologico dovesse fallire o non fosse attuabile, oppure in casi di distocia ostruttiva è possibile ricorrere alla chirurgia. Per stasi follicolare si intende la incapacità di produrre sufficiente quantità di progesterone da corpi lutei perfettamente funzionanti. Come per la distocia, l’eziologia della stasi follicolare è variegata e molto ampia: le cause possono essere sia ambientali che patologiche. La diagnosi clinica viene fatta essenzialmente per esclusione. Come per la distocia, anche in questo caso l’anamnesi e la raccolta del maggior quantitativo di informazioni è fondamentale per indirizzarsi verso il riconoscimento della patologia. Per prolasso si intende la fuoriuscita di un organo attraverso un orifizio del corpo. Nei rettili, diversi organi possono prolassare attraverso la cloaca: la porzione terminale dell’apparato gastroenterico, la vescica urinaria, il pene nel maschio (cheloni) e gli ovidutti nella femmina. In sauri e ofidi gli emipeni possono prolassare dalle rispettive tasche in seguito ad eccesiva attività sessuale97. La corretta identificazione del viscere prolassato è estremamente importante e deve essere effettuata prima di decidere qualsiasi tipologia di trattamento ed intervento. Nei casi acuti e non complicati è possibile la riduzione manuale dell’organo, dopo un accurato lavaggio e attenta pulizia. Se questo non dovesse essere possibile, l’utilizzo di lubrificanti e pomate antibiotiche garantisce all’organo una protezione efficiente. Nel caso in cui non si sia potuto intervenire celermente e l’organo sia andato incontro a infezione e congestione venosa prolungata con conseguente necrosi, l’unica soluzione è l’amputazione
Resumo:
Mode of access: Internet.
Resumo:
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the down-stream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location Was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function. (C) 2003 by The American Society of Hematology.
Resumo:
Endochondral bone is formed during an avascular period in an environment of low oxygen. Under these conditions, pluripotential mesenchymal stromal cells preferentially differentiate into chondrocytes and form cartilage. In this study, we investigated the hypothesis that oxygen tension modulates bone mesenchymal cell fate by altering the expression of genes that function to promote chondrogenesis. Microarray of RNA samples from ST2 cells revealed significant changes in 728 array elements (P < 0.01) in response to hypoxia. Real-time PCR on these RNA samples, and separate samples from C3H10T1/2 cells, revealed hypoxia-induced changes in the expression of additional genes known to be expressed by chondrocytes including Sox9 and its downstream targets aggrecan and Col2a. These changes were accompanied by the accumulation of mucopolysacharide as detected by alcian blue staining. To investigate the mechanisms responsible for upregulation of Sox9 by hypoxia, we determined the effect of hypoxia on HIF-1 alpha levels and Sox9 promoter activity in ST2 cells. Hypoxia increased nuclear accumulation of HIF-1 alpha and activated the Sox9 promoter. The ability of hypoxia to transactivate the Sox9 promoter was virtually abolished by deletion of HIF-1 alpha consensus sites within the proximal promoter. These findings suggest that hypoxia promotes the differentiation of mesenchymal cells along a chondrocyte pathway in part by activating Sox-9 via a HIF-1 alpha-dependent mechanism. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The phenomenon of B6-Y-DOM sex reversal arises when certain variants of the Mus domesticus Y chromosome are crossed onto the genetic background of the C57BL/6J (136) inbred mouse strain, which normally carries a Mus musculus-derived Y chromosome. While the sex reversal has been assumed to involve strain-specific variations in structure or expression of Sry, the actual cause has not been identified. Here we used in situ hybridization to study expression of Sry, and the critical downstream gene Sox9, in strains containing different chromosome combinations to investigate the cause of B6-Y-DOM sex reversal. Our findings establish that a delay of expression of Sry(DOM) relative to Sry(B6) underlies B6-Y-DOM sex reversal and provide the first molecular confirmation that Sry must act during a critical time window to appropriately activate Sox9 and effect male testis determination before the onset of the ovarian-determining pathway. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Sox7, Sox17 and Sox18 constitute group F of the Sox family of HMG box transcription factor genes. Dominant-negative mutations in Sox18 underlie the cardiovascular defects observed in ragged mutant mice. By contrast, Sox18(-/-) mice are viable and fertile, and display no appreciable anomaly in their vasculature, suggesting functional compensation by the two other SoxF genes. Here, we provide direct evidence for redundant function of Sox17 and Sox18 in postnatal neovascularization by generating Sox17(+/-)-Sox18(-/-) double mutant mice. Whereas Sox18(-/-) and Sox17(+/-)-Sox18(+/)-mice showed no vascular defects, approximately half of the Sox17(+/-)-Sox18(-/-) pups died before postnatal day 21 (P21). They showed reduced neovascularization in the liver sinusoids and kidney outer medulla vasa recta at P7, which most likely caused the ischemic necrosis observed by P14 in hepatocytes and renal tubular epithelia. Those that survived to adulthood showed similar, but milder, vascular anomalies in both liver and kidney, and females were infertile with varying degrees of vascular abnormalities in the reproductive organs. These anomalies corresponded with sites of expression of Sox7 and Sox17 in the developing postnatal vasculature. In vitro angiogenesis assays, using primary endothelial cells isolated from the P7 livers, showed that the Sox17(+/-)-Sox18(-/-)endothelial cells were defective in endothelial sprouting and remodeling of the vasculature in a phenotype-dependent manner. Therefore, our findings indicate that Sox17 and Sox18, and possibly all three SoxF genes, are cooperatively involved in mammalian vascular development.
Resumo:
The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.
Resumo:
The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.
Resumo:
Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.