246 resultados para Telomere
Resumo:
The est1 mutant was previously identified because it is defective in telomere maintenance and displays a senescent phenotype. To see if Est1 might be a component of yeast telomerase, we examined immunoprecipitated Est1. The yeast telomerase RNA Tlc1 specifically coprecipitated with Est1. Furthermore, the Est1 immunoprecipitates contained a telomerase-like activity. As expected for yeast telomerase, the activity elongated telomeric primers, it required dGTP and dTTP but not dATP or dCTP, and it was sensitive to RNase A. Further evidence suggesting that the activity was telomerase was obtained from experiments using a TLC1-1 mutant strain, which has a mutant telomerase template containing dG residues. The activity immunoprecipitated from TLC1-1 mutant strains incorporated 32P-labeled dCTP, while activity from TLC1 strains did not. Use of different telomeric primer substrates revealed two distinguishable telomerase-like activities: one was dependent on TLC1, and one was not. The TLC1-independent activity may be due to a second yeast telomerase RNA, or it may be some other kind of activity.
Resumo:
The pseudoautosomal region (PAR) is a segment of shared homology between the sex chromosomes. Here we report additional probes for this region of the mouse genome. Genetic and fluorescence in situ hybridization analyses indicate that one probe, PAR-4, hybridizes to the pseudoautosomal telomere and a minor locus at the telomere of chromosome 9 and that a PCR assay based on the PAR-4 sequence amplifies only the pseudoautosomal locus (DXYHgu1). The region detected by PAR-4 is structurally unstable; it shows polymorphism both between mouse strains and between animals of the same inbred strain, which implies an unusually high mutation rate. Variation occurs in the region adjacent to a (TTAGGG)n array. Two pseudoautosomal probes can also hybridize to the distal telomeres of chromosomes 9 and 13, and all three telomeres contain DXYMov15. The similarity between these telomeres may reflect ancestral telomere-telomere exchange.
Resumo:
DNA molecules undergoing transformation into yeast are highly recombinogenic, even when diverged. We reasoned that transformation-associated recombination (TAR) could be employed to clone large DNAs containing repeat sequences, thereby eliminating the need for in vitro enzymatic reactions such as restriction and ligation and reducing the amount of DNA handling. Gently isolated human DNA was transformed directly into yeast spheroplasts along with two genetically marked (M1 and M2) linearized vectors that contained a human Alu sequence at one end and a telomere sequence at the other end (Alu-CEN-M1-TEL and Alu-M2-TEL). Nearly all the M1-selected transformants had yeast artificial chromosomes (YACs) containing human DNA inserts that varied in size from 70 kb to > 600 kb. Approximately half of these had also acquired the unselected M2 marker. The mitotic segregational stability of YACs generated from one (M1) or two (M1 and M2) vector(s) was comparable, suggesting de novo generation of telomeric ends. Since no YACs were isolated when rodent DNAs or a vector lacking an Alu sequence was used, the YACs were most likely the consequence of TAR between the repeat elements on the vector(s) and the human DNA. Using the BLUR13 Alu-containing vector, we demonstrated that human DNA could be efficiently cloned from mouse cells that contained a single human chromosome 16. The distribution of cloned DNAs on chromosome 16 was determined by fluorescence in situ hybridization. We propose that TAR cloning can provide an efficient means for generating YACs from specific chromosomes and subchromosome fragments and that TAR cloning may be useful for isolating families of genes and specific genes from total genome DNA.
Resumo:
The present study has assessed the replicative history and the residual replicative potential of human naive and memory T cells. Telomeres are unique terminal chromosomal structures whose length has been shown to decrease with cell division in vitro and with increased age in vivo for human somatic cells. We therefore assessed telomere length as a measure of the in vivo replicative history of naive and memory human T cells. Telomeric terminal restriction fragments were found to be 1.4 +/- 0.1 kb longer in CD4+ naive T cells than in memory cells from the same donors, a relationship that remained constant over a wide range of donor age. These findings suggest that the differentiation of memory cells from naive precursors occurs with substantial clonal expansion and that the magnitude of this expansion is, on average, similar over a wide range of age. In addition, when replicative potential was assessed in vitro, it was found that the capacity of naive cells for cell division was 128-fold greater as measured in mean population doublings than the capacity of memory cells from the same individuals. Human CD4+ naive and memory cells thus differ in in vivo replicative history, as reflected in telomeric length, and in their residual replicative capacity.
Resumo:
Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.
Resumo:
Acquired interstitial loss of all or part of the long arm of human chromosome 5 (5q-) is an anomaly that is seen frequently in patients with preleukemic myelodysplasia and acute myelogenous leukemia. Loss of a critical region of overlap at band 5q31.1 in all of these cases, with various cytogenetic breaks, signifies the existence of a key negative regulator of leukemogenesis. Previous studies have defined the proximal and distal ends of the critical region to reside between the genes for IL9 and EGR1, respectively. In this report, we describe a yeast artificial chromosome contig spanning this myeloid tumor suppressor locus. The combined order of the polymorphic loci is centromere-IL9-(D5S525-D5S558-D5S89-D5S526 -D5S393)-D5S399-D5S396-D5S414-EGR1 and telomere. The physical distance between the IL9 and EGR1 genes is estimated to be < 2.4 Mb. Here we report the utility of these polymorphic loci by detecting a submicroscopic deletion of 5q31; an acute myelogenous leukemia patient with a three-way translocation, t(5;18;17)(q31;p11;q11), as the sole anomaly revealed allele loss of the D5S399 and D5S396 loci.
Resumo:
We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.
Resumo:
One of the hallmarks of cancer is its unlimited replicative potential that needs a compensatory mechanism for the consequential telomere erosion. Telomerase promoter (TERTp) mutations were recently reported as a novel mechanism for telomerase re-activation/expression in order to maintain telomere length. Pancreatic endocrine tumors (PETs) were so far recognized to rely mainly on the alternative lengthening of telomeres (ALT) mechanism. It was our objective to study if TERTp mutations were present in pancreatic endocrine tumors (PET) and could represent an alternative mechanism to ALT. TERTp mutations were detected in 7% of the cases studied and were mainly associated to patients harbouring hereditary syndromes. In vitro, using PET-derived cell lines and by luciferase reporter assay, these mutations confer a 2 to 4-fold increase in telomerase transcription activity. These novel alterations are able to recruit ETS transcription factor members, in particular GABP-α and ETV1, to the newly generated binding sites. We report for the first time TERTp mutations in PETs and PET-derived cell lines. Additionally, our data indicate that these mutations serve as an alternative mechanism and in an exclusive manner to ALT, in particular in patients with hereditary syndromes.
Resumo:
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multitasking protein involved in RNA packaging, alternative splicing of pre-mRNA. telomere maintenance, cytoplasmic RNA trafficking, and translation. It binds short segments of single-stranded nucleic acids, including the A2RE11 RNA element that is necessary and sufficient for cytoplasmic transport of a subset of rnRNAs in oligodendrocytes and neurons. We have explored the structures of hnRNP A2, its RNA recognition motifs (RRMs) and Gly-rich module, and the RRM complexes with A2RE11. Circular dichroism spectroscopy showed that the secondary structure of the first 189 residues of hnRNP A2 parallels that of the tandem beta alpha beta beta alpha beta RRMs of its paralogue, hnRNP A1, previously deduced from X-ray diffraction studies. The unusual GRD was shown to have substantial beta-sheet and beta-turn structure. Sedimentation equilibrium and circular dichroism results were consistent with the tandem RRM region being monomeric and supported earlier evidence for the binding of two A2RE11 oligoribonucleotides to this domain, in contrast to the protein dimer formed by the complex of hnRNP A1 with the telomeric ssDNA repeat. A three-dimensional structure for the N-terminal, two-RRM-containing segment of hnRNP A2 was derived by homology modeling. This structure was used to derive a model for the complex with A2RE11 using the previously described interaction of pairs of stacked nucleotides with aromatic residues on the RRM beta-sheet platforms, conserved in other RRM-RNA complexes, together with biochemical data and molecular dynamics-based observations of inter-RRM mobility.
Resumo:
We have developed a sensitive, non-radioactive method to assess the interaction of transcription factors/DNA-binding proteins with DNA. We have modified the traditional radiolabeled DNA gel mobility shift assay to incorporate a DNA probe end-labeled with a Texas-red fluorophore and a DNA-binding protein tagged with the green fluorescent protein to monitor precisely DNA-protein complexation by native gel electrophoresis. We have applied this method to the DNA-binding proteins telomere release factor-1 and the sex-determining region-Y, demonstrating that the method is sensitive (able to detect 100 fmol of fluorescently labeled DNA), permits direct visualization of both the DNA probe and the DNA-binding protein, and enables quantitative analysis of DNA and protein complexation, and thereby an estimation of the stoichiometry of protein-DNA binding.
Resumo:
Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is no effective cure. The over-expression of a number of genes, including the epidermal growth factor receptor (EGFr), has been implicated as a causative factor of tumourigenesis. Ribozymes are a class of ribonucleic acid that possess enzymatic properties. They can inhibit gene-expression in a highly sequence specific manner by catalysing the trans-cleavage of target RNA. The potential use of synthetic hammerhead ribozymes as novel anti-brain tumour agents was investigated in this study. The successful use of synthetic, exogenously administered ribozymes for such applications will require chemical modifications that improve biological stability and a fundamental understanding of cellular uptake mechanisms. Chimeric 2'-O-methylated hammerhead ribozymes proved to be significantly more stable (>4000-fold) in serum than unmodified RNA ribozymes and exhibited high in vitro catalytic activity. The cellular association of an internally [32P]-labelled 2'-O-methylated chimeric ribozyme in U87-MG human glioma cells was temperature-, energy- and pH-dependent and involved an active process that could be competed with a variety of polyanions. Indications are that the predominant mechanism of uptake is by adsorptive and / or receptor mediated endocytosis. Twenty 2'-O-methylated chimeric ribozymes were designed to cleave various sites along the EGFr mRNA. In vitro, 18 ribozymes exhibited high activity in cleaving a complementary short substrate. Using LipofectAMINETM as a delivery agent, the efficacy of these ribozymes was evaluated in the A431 cell line, which expresses amplified levels of EGFr. Studies revealed that although the ribozymes were taken up by the cells and remained stable over a period of 4 days, no significant reduction in either EGFr expression or cell proliferation was evident. The presence of telomerase, a ribonucleoprotein responsible for telomere elongation, has been strongly associated with tumour progression. The biological activity of a 2'-O-methylated ribozyme targeted against the RNA component of telomerase was determined. The ribozyme exhibited specific dose-dependent inhibition of telomerase activity in U87-MG cell lysates with an IC50 of –4μM. When 4μM ribozyme was delivered to intact U87-MG cells, complexed to LipofectAMINETM, telomerase activity was significantly reduced to 74.5±4.17% of the untreated control. Free ribozyme showed no significant inhibitory effect demonstrating the importance of an appropriate delivery system for optimum delivery of exogenously administered ribozymes.
Resumo:
Glioblastoma Multiforme (GBM) is a highly malignant form of brain cancer for which there is currently no effective cure. Consequently, developing new therapies and elucidating effective targets is crucial for this fatal disease. In recent years, DNA enzymes, deoxyribonucleic acid molecules with enzymatic activity, have emerged. In the same manner as ribozymes, DNA enzymes are able to effect cleavage of RNA in a sequence-specific manner, and operate with catalytic efficiency. In this study, two DNA enzymes were designed to target the template region of human telomerase RNA (hTR), utilising the 10-23 and 8-17 catalytic motifs elucidated by Santoro and Joyce (1997). Telomerase is an RNA-dependent DNA polymerase, which stabilises telomere lengths by adding hexameric repeats (TTAGGG in humans) to chromosome termini, thus preventing the telomere shortening that usually occurs during mitotic cell division. Telomerase activity, whilst absent in normal somatic tissues, is present in almost 90% of all tumours. Thus, there is speculation that telomerase may be the much sought universal target for therapeutic intervention in cancer. In vitro cleavage assays showed both DNA enzymes to be catalytically competent. Unmodified phosphodiester (PO) backbone DNA enzymes were rapidly degraded in the presence of serum, with a half-life of 10 minutes. The common approach of introducing phosphorothioate (PS) linkages was used in an effort to overcome this instability. As a result of concurrent activity and stability studies on the DNA enzymes with various numbers of PS linkages, the DNA enzymes with a PO core and PS arms were chosen for use in further cell work. The cleavage activity of both was shown to be specific and affected by temperature, pH, MgCI2 concentration and enzyme concentration. Both DNA enzyme motifs reduced telomerase activity in cell lysates, as assessed by the telomerase repeat amplification protocol (TRAP) with an IC50 of 100nM. DNA enzymes being polyanionic molecules do not readily cross biological barriers. Cellular association of naked DNA enzyme was inefficient at less than 2%. Cellular delivery of the DNA enzymes was effectively improved using commercial cationic lipid formulations. However, the lipid-mediated delivery of DNA enzymes to U87-MG cells over a 4-hour period did not significantly inhibit cell proliferation compared to controls. This is possibly due to an expected lag period between the inhibition of telomere maintenance and cell death. Therefore, biodegradable polymer microspheres were investigated as a potential delivery option for prolonged and sustained delivery. In vitro release profiles showed that after an initial burst, sustained release of DNA enzymes was observed over 35 days. Finally, the efficacy and specificity of the DNA enzymes were demonstrated in a luciferase based reporter assay. Specific inhibition of luciferase expression was displayed at 10nM. Thus DNA enzymes have potential against endogenous cellular targets.
Resumo:
This is an excerpt from the content: The convoy principal states that any system is only as functional as its ‘slowest’ unit. As organisms are made up of interconnected networks of physiological systems, it is possible that this principle applies to the biology of ageing. Often biogerontology will focus either on organismal ageing (mechanisms associated with increased longevity of a lower model organism for example), ageing of an individual organ system (such as the cardiovascular/musculoskeletal/immune) or ageing at the cellular level (from telomere length to cellular senescence, with many different cell types being studied) without considering the interconnectedness between the three and importantly, between the separate units of the convoy; the different organ systems. Conceptually, research that aims to identify ‘anti-ageing’ therapies is often deemed to be reaching for a panacea that will arrest or slow down the ageing process as a whole, whereas a more realistic aim is to first identify how we can improve the perfor ...
Resumo:
Telomerase reverse transcriptase (TERT) is a key component of the telomerase complex. By lengthening telomeres in DNA strands, TERT increases senescent cell lifespan. Mice that lack TERT age much faster and exhibit age-related conditions such as osteoporosis, diabetes and neurodegeneration. Accelerated telomere shortening in both human and animal models has been documented in conditions associated with insulin resistance, including T2DM. We investigated the role of TERT, in regulating cellular glucose utilisation by using the myoblastoma cell line C2C12, as well as primary mouse and human skeletal muscle cells. Inhibition of TERT expression or activity by using siRNA (100. nM) or specific inhibitors (100. nM) reduced basal 2-deoxyglucose uptake by ~. 50%, in all cell types, without altering insulin responsiveness. In contrast, TERT over-expression increased glucose uptake by 3.25-fold. In C2C12 cells TERT protein was mostly localised intracellularly and stimulation of cells with insulin induced translocation to the plasma membrane. Furthermore, co-immunoprecipitation experiments in C2C12 cells showed that TERT was constitutively associated with glucose transporters (GLUTs) 1, 4 and 12 via an insulin insensitive interaction that also did not require intact PI3-K and mTOR pathways. Collectively, these findings identified a novel extra-nuclear function of TERT that regulates an insulin-insensitive pathway involved in glucose uptake in human and mouse skeletal muscle cells. © 2014 Elsevier B.V.
Resumo:
Lower jaws (containing the teeth), eyes, and skin samples were collected from harp seals (Pagophilus groenlandicus) in the southeastern Barents Sea for the purpose of comparing age estimates obtained by 3 different methods, the traditional technique of counting growth layer groups (GLGs) in teeth and 2 novel approaches, aspartic acid racemization (AAR) in eye lens nuclei and telomere sequence analyses as a proxy for telomere length. A significant correlation between age estimates obtained using GLGs and AAR was found, whereas no correlation was found between GLGs and telomere length. An AAR rate (k Asp) of 0.00130/year ± 0.00005 SE and a D-enantiomer to L-enantiomer ratio at birth (D/L 0 value) of 0.01933 ± 0.00048 SE were estimated by regression of D/L ratios against GLG ages from 25 animals (12 selected teeth that had high readability and 13 known-aged animals). AAR could prove to be useful, particularly for ageing older animals in species such as harp seals where difficulties in counting GLGs tend to increase with age. Age estimation by telomere length did not show any correlation with GLG ages and is not recommended for harp seals.