932 resultados para Tape extrusion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To review the literature searching for a consensus for the choice of orthodontic extrusion as treatment for crown-root fracture. An electronic search was performed in the databases PubMed, Cochrane Central Register of Controlled Trials and Scopus and a manual search of the Journal Dental Traumatology. Forty articles were found in PubMed and 38 in Scopus and after removal of duplicate sample 51 contained articles. Of these, 48 were excluded for not having orthodontic treatment, no follow-up or follow-up less than 6 months, or not report the presence of crown-root fracture. In manual search in Dental Traumatology 20 articles were found, but none of them met the prerequisites established. So, three articles formed the basis of the study. The choice of how to treat orthodontic extrusion of crown-root fracture was effective and stable, without root and periodontal changes. Factors, such as root formation and presence of pulp vitality were decisive for determining the stages of treatment, however, there is no consensus based on scientific evidence about these protocols.
Resumo:
Tape Casting proved to be an effective method for the production of thick films of CeO2 pure and doped with La. For this study, the nanoparticles used to form the slurry were synthesizes by the H-M method, at 100°C for 8 minutes, using KOH mineralizer. The slurry was made in aqueous solvent, requiring optimal control of surroundings conditions so that the produced tape has conditions to be studied. However, there's no toxicity or flammability in the film made by such solvent, being pleasing to the environment. The structural, optical and electrical properties of the films obtained by the Tape Casting process were studied by the methods of X-ray diffraction, scanning electron microscopy, specific surface area, Ultraviolet-visible spectroscopy and voltage-current measures, varying the electric field and frequency. From the results obtained by laboratory experiments, based on the literature, it was possible to reveal and understand some CeO2 features pure and doped with La
Resumo:
Tape Casting proved to be an effective method for the production of thick films of CeO2 pure and doped with La. For this study, the nanoparticles used to form the slurry were synthesizes by the H-M method, at 100°C for 8 minutes, using KOH mineralizer. The slurry was made in aqueous solvent, requiring optimal control of surroundings conditions so that the produced tape has conditions to be studied. However, there's no toxicity or flammability in the film made by such solvent, being pleasing to the environment. The structural, optical and electrical properties of the films obtained by the Tape Casting process were studied by the methods of X-ray diffraction, scanning electron microscopy, specific surface area, Ultraviolet-visible spectroscopy and voltage-current measures, varying the electric field and frequency. From the results obtained by laboratory experiments, based on the literature, it was possible to reveal and understand some CeO2 features pure and doped with La
Resumo:
With the purpose of evaluating the behavior of different polymers employed as binders in small-diameter pellets for oral administration, we prepared formulations containing paracetamol and one of the following polymers: PVP, PEG 1500, hydroxypropylmethylcellulose and methylcellulose, and we evaluated their different binding properties. The pellets were obtained by the extrusion/spheronization process and were subsequently subjected to fluid bed drying. In order to assess drug delivery, the United States Pharmacopeia (USP) apparatus 3 (Bio-Dis) was employed, in conjunction with the method described by the same pharmacopeia for the dissolution of paracetamol tablets (apparatus 1). The pellets were also evaluated for granulometry, friability, true density and drug content. The results indicate that the different binders used are capable of affecting production in different ways, and some of the physicochemical characteristics of the pellets, as well as the dissolution test, revealed that the formulations acted like immediate-release products. The pellets obtained presented favorable release characteristics for orally disintegrating tablets. USP apparatus 3 seems to be more adequate for discriminating among formulations than the basket method.
Resumo:
We developed cationic liposomes containing DNA through a conventional process involving steps of (i) preformation of liposomes, (ii) extrusion, (iii) drying and rehydration and (iv) DNA complexation. Owing to its high prophylactic potentiality against tuberculosis, which had already been demonstrated in preclinical assays, we introduced modifications into the conventional process towards getting a simpler and more economical process for further scale-up. Elimination of the extrusion step, increasing the lipid concentration (from 16 to 64 mM) of the preformed liposomes and using good manufacturing practice bulk lipids (96-98% purity) instead of analytical grade purity lipids (99.9-100%) were the modifications studied. The differences in the physico-chemical properties, such as average diameter, zeta potential, melting point and morphology of the liposomes prepared through the modified process, were not as significant for the biological properties, such as DNA loading on the cationic liposomes, and effective immune response in mice after immunisation as the control liposomes prepared through the conventional process. Beneficially, the modified process increased productivity by 22% and reduced the cost of raw material by 75%.
Resumo:
The use of a photodegradable tape was evaluated on 'Valencia' sweet orange nursery trees budded both on Rangpur lime and Swingle citrumelo in a greenhouse in Bebedouro-SP, Brazil, from September to November 2009. On both rootstocks three wrapping procedures were evaluated: i) conventional polyethylene tape wrapped around the bud eye; ii) photodegradable tape wrapped around the bud eye, and iii) photodegradable tape wrapped around the graft junction without covering the bud eye. The following variables were measured: time spent for wrapping, percentage of bud sprouting, length and stem diameter of the scion shoot, and percentage of commercially valuable nursery trees. The trial was conducted following a randomized complete block design, with six treatments, four replications and 12 trees per plot. The use of photodegradable tape, with or without covering the bud eye, anticipated bud sprouting; despite of the longer time spent with wrapping when the photodegradable tape was used. Plants grafted onto the less vigorous Swingle citrumelo rootstock showed lower bud sprout percentages when the bud eye was covered with the photodegradable tape.
Resumo:
Gelatin-based films containing both Yucca schidigera extract and low concentrations of glycerol (0.25-8.75 g per 100 g protein) were produced by extrusion (EF) and characterized in relation to their mechanical properties and moisture content. The formulations that resulted in either larger or smaller elongation values were used to produce films via both blown extrusion (EBF) and casting (CF) and were characterized with respect to their mechanical properties, water vapor permeability, moisture content, solubility, morphology and infrared spectroscopy. The elongation of the EF films was significantly higher than that of the CF and EBF films. The transversal section possessed a compact, homogeneous structure for all of the films studied. The solubility of the films (36-40%) did not differ significantly between the different processes evaluated. The EBF films demonstrated lower water vapor permeability (0.12 g mm m-(2) h(-1) kPa(-1)) than the CF and EF films. The infrared spectra did not indicate any strong interactions between the added compounds. Thermoplastic processing of the gelatin films can significantly increase their elongation; however, a more detailed assessment and optimization of the extrusion conditions is necessary, along with the addition of partially hydrophobic compounds, such as surfactants. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Corn grits that were supplemented with isovaleraldehyde, ethyl butyrate, butyric acid and flavour enhancers were extruded under different processing conditions. Volatile compounds retained in the extrudates were isolated by dynamic headspace and analysed using gas chromatographymass spectrometry. The expansion ratio, density and cut force to break down the extrudates were evaluated and aroma intensity was assessed using a multisample difference test. Butyric acid showed the greatest retention (96.4%), regardless of the extrusion conditions. All compounds were better retained when samples were extruded at 20% feed moisture and 90 degrees C processing temperature (2.981.0%), conditions that also resulted in greater aromatic intensity (moderate to moderate-strong intensity). The addition of volatile compounds reduced the expansion ratio and cut force, whereas the addition of flavour enhancers increased the expansion ratio but reduced ethyl butyrate and butyric acid retention.
Resumo:
This paper presents an experimental study on two-phase flow patterns and pressure drop of R134a inside a 15.9 mm ID tube containing twisted-tape inserts. Experimental results were obtained in a horizontal test section for twisted-tape ratios of 3, 4, 9 and 14, mass velocities ranging from 75 to 250 kg/m(2) s and saturation temperatures of 5 and 15 degrees C. An unprecedented discussion on two-phase flow patterns inside tubes containing twisted-tape inserts is presented and the flow pattern effects on the frictional pressure drop are carefully discussed. Additionally, a new method to predict the frictional pressure drop during two-phase flow inside tubes containing twisted-tape inserts is proposed. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Poly(ethylene tereftalate) (PET) is a polymer highly susceptible to the hydrolytic reactions that occur during applications and mainly in thermomechanical processing. These reactions lead to the decrease of molecular weight of the polymer, limiting the recycling number of the material. The reactive extrusion of the PET in presence of chain extenders is an alternative to recover mechanical and rheological properties that were depreciated by the polymer degradation. In this study, PET wastes from nonwoven fabrics production were extruded in presence of the secondary stabilizer Irgafos 126 (IRG) on variable concentrations. The results showed that Irgafos 126 increased molecular weight, decreased crystallinity and changed processing behavior of the PET, similarly to the effects produced by the well-known chain extender pyromellitic dianhydride (PMDA), showing that the secondary stabilizer Irgafos 126 can also act as a chain extender for the PET.
Resumo:
Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.
Resumo:
The aim of this prospective study was to evaluate the feasibility and outcome of an adjustable sling system AMI in patients with recurrent urinary stress incontinence after failed suburethral sling insertion.