949 resultados para THIN-LAYER-CHROMATOGRAPHY
Resumo:
The content of isoorientin in passion fruit rinds (Passiflora edulis fo. flavicarpa O. Degener) was determined by HPTLC (high performance thin layer chromatography) with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P. edulis (92.275 ± 0.610 mg L-1) than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus) infection (28.931 ± 0.346 mg L-1). The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P. edulis rinds as a natural source of flavonoids or as a possible functional food.
Resumo:
Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.
Resumo:
The growth and the metabolism of Bifidobacterium adolescentis MB 239 fermenting GOS, lactose, galactose, and glucose were investigated. An unstructerd unsegregated model for growth of B. adolescentis MB 239 in batch cultures was developed and kinetic parameters were calculated with a Matlab algorithm. Galactose was the best carbon source; lactose and GOS led to lower growth rate and cellular yield, but glucose was the poorest carbon source. Lactate, acetate and ethanol yields allowed calculation of the carbon fluxes toward fermentation products. Similar distribution between 3- and 2-carbon products was observed on all the carbohydrates (45 and 55%, respectively), but ethanol production was higher on glucose than on GOS, lactose and galactose, in decreasing order. Based on the stoichiometry of the fructose 6-phosphate shunt and on the carbon distribution among the products, ATP yield was calculated on the different carbohydrates. ATP yield was the highest on galactose, while it was 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondance among ethanol production, low ATP yields, and low biomass production was established demonstrating that carbohydrate preferences may result from different sorting of carbon fluxes through the fermentative pathway. During GOS fermentation, stringent selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were first to be consumed, and a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that β-(1-4) galactosides can be hydrolysed before they are taken up. The physiology of Bifidobacterium adolescentis MB 239 toward xylooligosaccharides (XOS) was also studied and our attention was focused on an extracellular glycosyl-hydrolase (β-Xylosidase) expressed by a culture of B. adolescentis grown on XOS as sole carbon source. The extracellular enzyme was purified from the the supernatant, which was dialyzed and concentrated by ultrafiltration. A two steps purification protocol was developed: the sample was loaded on a Mono-Q anion exchange chromatography and then, the active fractions were pooled and β-Xylosidase was purified by gel filtration chromatography on a Superdex-75. The enzyme was characterized in many aspects. β- Xylosidase was an homo-tetramer of 160 kDa as native molecular mass; it was a termostable enzyme with an optimum of temperature at 53 °C and an optimum of pH of 6.0. The kinetics parameter were calculated: km = 4.36 mM, Vmax = 0.93 mM/min. The substrate specificity with different di-, oligo- and polysaccharides was tested. The reactions were carried out overnight at pH 7 and at the optimum of temperature and the carbohydrates hydrolysis were analyzed by thin layer chromatography (TLC). Only glycosyl-hydrolase activities on XOS and on xylan were detected, whereas sucrose, lactose, cellobiose, maltose and raffinose were not hydrolyzed. It’s clearly shown that β-Xylosidase activity was higher than the Xylanase one. These studies on the carbohydrate preference of a strain of Bifidobacterium underlined the importance of the affinity between probiotics and prebiotics. On the basis of this concept, together with Barilla G&R f.lli SpA, we studied the possibility to develop a functional food containing a synbiotic. Three probiotic strains Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 were studied to assess their suitability for utilization in synbiotic products on the basis of antioxidative activity, glutathione production, acid and bile tolerance, carbohydrates fermentation and viability in food matrices. Bile and human gastric juice resistance was tested in vitro to estimate the transit tolerance in the upper gastrointestinal tract. B. lactis and L. plantarum were more acid tolerant than S. thermophilus. All the strains resisted to bile. The growth kinetics on 13 prebiotic carbohydrates were determined. Galactooligosaccharides and fructo-oligosaccharides were successfully utilized by all the strains and could be considered the most appropriate prebiotics to be used in effective synbiotic formulations. The vitality of the three strains inoculated in different food matrices and maintained at room temperature was studied. The best survival of Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 was found in food chocolate matrices. Then an in vivo clinical trial was carried out for 20 healthy volunteers. The increase in faecal bifidobacteria and lactobacilli populations and the efficacy of the pre-prototype was promising for the future develop of potential commercial products.
Resumo:
Mikroorganismen spielen eine wichtige Rolle in der Weinherstellung. Neben ihren positiven Stoffwechselaktivitäten wie die Bildung von Ethanol während der alkoholischen Gärung sind vor allem Bakterien in der Lage, Weinfehler zu verursachen. Einer dieser Weinfehler ist die Produktion von biogenen Aminen. Diese niedermolekularen Stickstoffverbindungen können zu verschiedenen Gesundheitsproblemen wie Bluthochdruck und Migräne führen. Aufgrund von hohen Ethanolgehalten und dem Vorkommen verschiedener biogener Amine kommt es im Wein zu einer Verstärkung dieser physiologischen Effekte. Um die Bildung dieser Verbindungen zu verhindern, ist es von speziellem Interesse, die verantwortlichen Mikroorganismen zu identifizieren und sie in ihrem Wachstum zu hemmen.In einem Teil der Dissertation stand die Isolierung und Identifizierung biogener Amine produzierender Bakterien aus deutschen Jungweinen und Mosten im Vordergrund. Es konnte gezeigt werden, dass hauptsächlich Milchsäurebakterien als potenzielle Produzenten in Frage kommen. Diese Bakteriengruppe war in hohen Titern in nahezu allen Proben vorhanden und stellt somit eine potentielle Gefahr für die Weinbereitung dar. Zur Identifizierung der Isolate wurden verschiedene molekularbiologische Methoden wie specifically amplified DNA polymorphic-PCR (Fingerprintmethode), Multiplex-PCR oder 16S rDNA-Sequenzierung angewandt. Das Screening bezüglich der Bildung von biogenen Aminen erfolgte mit Hilfe einer im Rahmen dieser Arbeit entwickelten hochauflösenden Dünnschichtchromatographie gefolgt von der Quantifizierung mittels HPLC.Zur Wachstumshemmung dieser Schadbakterien wurden zwei Exoenzyme aus Streptomyces albidoflavus B578 isolieren. Diese Enzyme wurden gereinigt und als eine Muramidase und eine Protease identifiziert. Aktivitätstests konnten zeigen, dass diese Enzyme eine hohe lytische Wirkung gegen weinrelevante Mikroorganismen aufweisen. Ebenso war die Aktivität der Enzyme unter Weinbedingungen sehr stabil. Aufgrund dieser Ergebnisse könnten diese Enzyme eine mögliche Alternative zur Zugabe von Lysozym oder Schwefeldioxid sein, welche konventionell in der Weinbereitung ihren Einsatz finden.
Resumo:
The research project object of this thesis is focused on the development of an advanced analytical system based on the combination of an improved thin layer chromatography (TLC) plate coupled with infrared (FTIR) and Raman microscopies for the detection of synthetic dyes. Indeed, the characterization of organic colorants, which are commonly present in mixtures with other components and in a very limited amount, still represents a challenging task in scientific analyses of cultural heritage materials. The approach provides selective spectral fingerprints for each compound, foreseeing the complementary information obtained by micro ATR-RAIRS-FTIR and SERS-Raman analyses, which can be performed on the same separated spot. In particular, silver iodide (AgI) applied on a gold coated slide is proposed as an efficient stationary phase for the discrimination of complex analyte mixtures, such as dyes present in samples of art-historical interest. The gold-AgI-TLC plate shows high performances related both to the chromatographic separation of analytes and to the spectroscopic detection of components. The use of a mid-IR transparent inorganic salt as the stationary phase avoids interferences of the background absorption in FTIR investigations. Moreover, by ATR microscopy measurements performed on the gold-AgI surface, a considerable enhancement in the intensity of spectra is observed. Complementary information can be obtained by Raman analyses, foreseeing a SERS activity of the AgI substrate. The method has been tested for the characterization of a mixture of three synthetic organic colorants widely used in dyeing processes: Brilliant Green (BG1), Rhodamine B (BV10) and Methylene Blue (BB9).
Resumo:
Glucocorticoids (GC) have important anti-inflammatory and pro-apoptotic activities. Initially thought to be exclusively produced by the adrenal glands, there is now increasing evidence for extra-adrenal sources of GCs. We have previously shown that the intestinal epithelium produces immunoregulatory GCs and that intestinal steroidogenesis is regulated by the nuclear receptor liver receptor homolog-1 (LRH-1). As LRH-1 has been implicated in the development of colon cancer, we here investigated whether LRH-1 regulates GC synthesis in colorectal tumors and whether tumor-produced GCs suppress T-cell activation. Colorectal cancer cell lines and primary tumors were found to express steroidogenic enzymes and regulatory factors required for the de novo synthesis of cortisol. Both cell lines and primary tumors constitutively produced readily detectable levels of cortisol, as measured by radioimmunoassay, thin-layer chromatography and bioassay. Whereas overexpression of LRH-1 significantly increased the expression of steroidogenic enzymes and the synthesis of cortisol, downregulation or inhibition of LRH-1 effectively suppressed these processes, indicating an important role of LRH-1 in colorectal tumor GC synthesis. An immunoregulatory role of tumor-derived GCs could be further confirmed by demonstrating a suppression of T-cell activation. This study describes for the first time cortisol synthesis in a non-endocrine tumor in humans, and suggests that the synthesis of bioactive GCs in colon cancer cells may account as a novel mechanism of tumor immune escape.
Resumo:
INTRODUCTION: Testosterone (T) is a therapeutic option for women with hypoactive sexual desire disorder. T may have an impact on the mammary gland by altering local estrogen synthesis. The aim of the present study was to measure the effect of T on estrone-sulfate (E1S)-sulfatase (STS) expression, and activity using hormone-dependent BC cells with high and low aggressive potential (BT-474, MCF-7), and HBL-100 as a breast cell line of non-malignant origin. METHODS: Cells were incubated in RPMI 1640 medium containing 5% steroid-depleted fetal calf serum for 3d, and subsequently incubated in absence or presence of T alone, and combined with anastrozole (A) at 10(-8)M, and 10(-6)M at 37 degrees C for either 24h or directly in cell extracts ("direct"). STS protein expression was measured by dot-blot (immunoblotting), and STS, HSD17B1 and HSD17B2 mRNA levels by quantitative RT-PCR. STS activity was evaluated by incubating homogenized breast cells with [(3)H]-E1S and separating the products E1, and E2 by thin layer chromatography. RESULTS: Basal STS mRNA expression did not reveal group differences. However, STS mRNA was decreased by T+A in MCF-7 cells. 17HSDB1 expression was decreased by T+A in BT-474 cells, and 17HSDB2 expression was decreased by A and T+A treatment in MCF-7 cells. Basal and T treated STS protein expression was significantly higher in malignant compared to non-malignant breast cells. However, T did not induce significant intra-cell line differences. Similarly, basal and T treated STS activity was significantly higher in highly malignant compared to non-malignant breast cells. Regardless of cell lines, T slightly decreased STS activity after "direct" incubation, but led to an increase of local estrogen formation after 24h which was attenuated, and partly reversed by A, respectively. CONCLUSIONS: The more aggressive the breast cell line, the higher the local estrogen formation. The transition from normal to malignant seems to be accompanied by an altered autoregulation. The given local endocrine milieu seems to be essential for response to T.
Resumo:
Malaria parasite digests hemoglobin and utilizes the globin part for its nutritional requirements. Heme released as a byproduct of hemoglobin degradation is detoxified by polymerization into a crystalline, insoluble pigment, known as hemozoin. We have identified a novel reaction of depolymerization of hemozoin to heme. This reaction is initiated by the interaction of blood schizonticidal antimalarial drugs with the malarial hemozoin. The reaction has been confirmed, with the purified hemozoin as well as the lysate of the malaria parasite. Pigment breakdown was studied by infrared spectroscopy, thin-layer chromatography and spectrophotometric analysis. It was complete within 2 h of drug exposure, which explains the selective sensitivity of late stages (trophozoites and schizonts) of malarial parasites loaded with the hemozoin pigment to the toxic action of these drugs. It is suggested that the failure of the parasite heme detoxification system due to this reaction results in the accumulation of toxic heme, which alone, or complexed with the antimalarial leads to the death of malaria parasite.
Resumo:
Malaria parasite detoxifies free haem, released as a result of haemoglobin digestion, by converting it into an stable, crystalline, black brown pigment known as 'malaria pigment' or 'haemozoin'. Earlier studies have demonstrated the involvement of a parasite-specific enzyme 'haem polymerase' in the formation of haemozoin. However, recently it has been proposed that the polymerization of haem may be a spontaneous process that could take place by incubation of haematin with carboxylic acids (pH 4.2-5.0) even without presence of any parasitic or biological component (FEBS Letters, 352, 54-57 (1994). Here we report that no spontaneous haem polymerization occurs at physiological conditions and the product described in the study mentioned above is not haemozoin/beta-haematin (haem polymer) as characterized by us on the basis of solubility characteristics and thin layer chromatography. The infra-red spectroscopic analysis of the product formed though exhibits the bands corresponding to formation of iron-carboxylate bond, similar to that in haemozoin/beta-haematin, but was identified as haem-acid adduct. Thus polymerization of haem may not occur spontaneously under the reaction conditions corresponding to food vacuoles of the malarial parasite, the physiological site of haemozoin formation.
Resumo:
Cyclosporine (CsA) has shown great benefit to organ transplant recipients, as an immunosuppressive drug. To optimize CsA immunosuppressive therapy, pharmacodynamic evaluation of serial patient serum samples after CsA administration, using mixed lymphocyte culture (MLC) assays, revealed in vitro serum immunosuppressive activity of a CsA-like, ether-extractable component, associated with good clinical outcome in vivo. Since the in vitro immunosuppressive CsA metabolites, M-17 and M-1, are erythrocyte-bound, the immunosuppressive activity demonstrated in patient serum suggests that other immunosuppressive metabolites need exist. To test this hypothesis and obtain CsA metabolites for study, ether-extracted bile from tritiated and nonradioactive CsA-treated pigs was processed by novel high performance liquid and thin-layer chromatography (HPLC and HPTLC) techniques. Initial MLC screening of potential metabolites revealed a component, designated M-E, to have immunosuppressive activity. Pig bile-derived M-E was characterized as a CsA metabolite, by radioactive CsA tracer studies, by 56% crossreactivity in CsA radioimmunoassay, and by mass spectrometric (MS) analysis. MS revealed a CsA ring structure, hydroxylated at a site other than at amino acid one. M-E was different than M-1 and M-17, as demonstrated by different retention properties for each metabolite, using HPTLC and a novel rhodamine B/ $\alpha$-cyclodextrin stain, and using HPLC, performed by Sandoz, that revealed M-E to be different than previously characterized metabolites. The immunosuppressive activity of M-E was quantified by determination of mean metabolite potency ratio in human MLC assays, which was found to be 0.79 $\pm$ 0.23 (CsA, 1.0). Similar to parent drug, M-E revealed inter-individual differences in its immunosuppressive activity. M-E demonstrates inhibition of IL-2 production by concanavalin A stimulated C3H mouse spleen cells, similar to CsA, as determined with an IL-2 dependent mouse cytotoxic T-cell line. ^
Resumo:
Mycobacterium tuberculosis infects more people worldwide each year than any other single organism. The Antigen 85 Complex, a family of fibronectin-binding proteins (Fbps) found in several species of mycobacteria and possibly involved in host interaction, is considered among the putative virulence factors of M. tuberculosis. These proteins are implicated in the production of trehalose dimycolate (TDM) and arabinogalactan-mycolate (AG-M), two prominent components of the mycobacterium cell wall and potent modulators of the immune system during infection. For these reasons, the principal members of the complex, FbpA and FbpB, were the focus of these studies. The genes encoding these proteins, fbpA and fbpB, were each disrupted by insertion of a kanamycin resistance cassette in a pathogenic strain of M. tuberculosis, H37Rv. Neither mutation affected growth in routine broth culture. Thin layer chromatography analysis of TDM and AG-M showed no difference in content between the parent strain H37Rv and the FbpA- and FbpB-deficient mutants grown under two different culture conditions. However, metabolic radiolabeling of the strains showed that the production of TDM (but not its precursor TMM) was delayed in the FbpA- and FbpB-deficient mutants compared to the parent H37Rv. During this same labeling period, FbpA-deficient mutant LAa1 failed to produce AG-M and in the FpbB-deficient mutant LAb1 production was decreased. In macrophage tissue culture assay, LAa1 failed to multiply when bacteria in early log phase were used to infect monolayers while LAb1 grew like the parent strain. The growth deficiency of LAa1 as well as the deficiencies in TDM and AG-M production were restored by complementing LAa1 with a functional fbpA gene. These results suggest that the FbpA and FbpB proteins are involved in synthesis of TDM (but not its precursor TMM) as well as AG-M. Other members of the complex appear to compensate for defects in synthesis caused by mutation of single genes in the complex over time. Mutation of the FbpA gene causes greater in vivo effect than mutation of the FbpB gene despite very similar deficiencies in the rate of production of mycolate containing molecules on the cell surface. ^
Resumo:
Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^
Resumo:
The mutagenicity study of the urinary metabolites of 2-aminonaphthalene was conducted to determine whether differences in metabolism between different acetylator phenotypes could account for a proposed mechanism of bladder carcinogenesis. This required the use of fast and slow acetylator rabbits with phenotypic similarities to humans. In the absence of available slow acetylators, it was necessary to inhibit fast acetylators. The proposed mechanism was that slow acetylators were at greater potential risk of bladder carcinogenesis due to low rates of acetylation, a detoxification mechanism for certain aromatic amines. The alternate metabolic pathway will be hydroxylation. The fast acetylators were proposed to exhibit lower risk of bladder carcinogenicity as a result of higher acetylation rates and less mutagenic metabolites.^ This hypothesis was approached by determining from in vitro mutagenicity assays with Salmonella typhimurium strains TA98 and TA100 whether different metabolites were mutagenic. The acetylation rate of each rabbit and a suitable method of acetylation inhibition were determined through oral exposure to dapsone and the acetylation inhibitor, K-p-aminosalicylic acid. Residues of dapsone and its acetylated metabolite were extracted from blood samples and analyzed by ultra-violet spectrometry using standard curves for each metabolite. The urine samples were concentrated on XAD-2 resin and analyzed both as whole urine concentrates and as isolated metabolites from spots on high performance thin layer chromatography plates. The major isolated spots were identified and quantified through extraction and analysis by high performance liquid chromatography when possible.^ Acetylation rate determination and inhibition were successfully demonstrated in rabbits. Significant mutagenicity was noted for several critical metabolites. None of the mutagenic metabolites were detected in higher concentration in the inhibited acetylators and thus, no clear relationship of metabolite concentration to bladder carcinogenesis was evident for the compounds analyzed. There was some evidence that the inhibitor may have affected critical enzyme systems other than acetylation alone. This would account for the lower concentrations of mutagenic hydroxylated compounds observed. ^
Resumo:
A study to assess possible exposure to carcinogenic metabolites (aflatoxins) from a mold Aspergillus flavus has been made in a rice producing area of Brazoria County, Texas. One hundred samples of unmilled rice were analyzed by thin-layer chromatography (TLC) for the amount of aflatoxin produced by the mold during rice growth and storage. Two well water samples and two rice elevator dust samples were also checked for possible aflatoxin content. The mortality rates from gastrointestinal and urinary tract cancers in the rice-growing part of the county were compared with mortality rates in the nonrice-producing areas of the same county.^ This study was an outgrowth of an earlier investigation by Cech and co-workers in Brazoria County which focused on environmental differences, specifically on the quality of drinking water in the former residences of decedents from primary liver cancer. It also compared subjects who died from other causes. The author of this dissertation participated in this phase of the overall investigation by performing some of the chemical analyses and by preparing synographic maps of water quality, and thus, part of those results from the early phase is also included in this manuscript.^ No aflatoxin was detected by TLC methods. However, when extracts of rice dust were checked for mutagenesis by the Ames Salmonella-microsome assay as a supplement to the TLC analysis, the result suggested that these dusts might have contained mutagenic material. The age-adjusted mortality rates in the rice-growing area were higher than those in the comparison area for both male and female gastrointestinal tract cancer and for male urinary tract cancer, but the differences were not statistically significant. ^
Resumo:
Los mastocitos son células del tejido conectivo que participan en la génesis y modulación de las respuestas inflamatorias celulares. En trabajos previos hemos demostrado que xanthatina (xanthanólido sesquiterpeno aislado de Xanthium cavanillesii Schouw) inhibe la activación de mastocitos inducida por secretagogos experimentales. Sin embargo, se desconoce su efecto sobre la activación de mastocitos inducida por estímulos fisiopatológicos. Estos estímulos incluyen, entre otros, los neuropéptidos pro-inflamatorios sustancia P y neurotensina, responsables de una de las principales vías de inflamación neurogénica. El objetivo del presente trabajo fue estudiar el efecto de xanthatina sobre la activación de mastocitos inducida por sustancia P y neurotensina. Mastocitos peritoneales de rata se incubaron con: 1) PBS (basal); 2) sustancia P (100 Fm); 3) neurotensina (50 Fm); 4) xanthatina (8-320 Fm)+sustancia P; 5) xanthatina (8-320 Fm)+neurotensina. La viabilidad de los mastocitos se evaluó con azul tripán. En las soluciones de incubación se cuantificó serotonina liberada (marcador de activación). En las células se cuantificó serotonina remanente (no liberada) y se analizó la morfología celular por microscopía óptica y electrónica de transmisión. Tratamiento estadístico: ANOVA-1 y Tukey-Kramer. La incubación de mastocitos con xanthatina inhibió (P<0,01), en forma dosisdependiente, la liberación de serotonina inducida por sustancia P y neurotensina, sin modificar la viabilidad celular. Los mastocitos tratados con neuropéptidos mostraron características morfológicas de degranulación, mientras que la morfología de los mastocitos tratados con xanthatina+neuropéptido fue semejante a los basales. En conclusión, xanthatina inhibe la activación de mastocitos inducida por sustancia P y por neurotensina. Este sesquiterpeno podría representar una nueva alternativa en el tratamiento de las inflamaciones neurogénicas.