962 resultados para T-helper-2 Cells
Resumo:
Six of 7 FXYD proteins have been shown to be tissue-specific modulators of Na,K-ATPase. In this study, we have identified two splice variants of human FXYD3, or Mat-8, in CaCo-2 cells. Short human FXYD3 has 72% sequence identity with mouse FXYD3, whereas long human FXYD3 is identical to short human FXYD3 but has a 26-amino acid insertion after the transmembrane domain. Short and long human FXYD3 RNAs and proteins are differentially expressed during differentiation of CaCo-2 cells. Long human FXYD3 is mainly expressed in nondifferentiated cells and short human FXYD3 in differentiated cells and both FXYD3 variants can be co-immunoprecipitated with a Na,K-ATPase antibody. In contrast to mouse FXYD3, which has two transmembrane domains for lack of cleavage of the signal peptide, human FXYD3 has a cleavable signal peptide and adopts a type I topology. After co-expression in Xenopus oocytes, both human FXYD3 variants associate stably only with Na,K-ATPase isozymes but not with H,K-ATPase or Ca-ATPase. Similar to mouse FXYD3, short human FXYD3 decreases the apparent K(+) and Na(+) affinity of Na,K-ATPase over a large range of membrane potentials. On the other hand, long human FXYD3 decreases the apparent K(+) affinity only at slightly negative and positive membrane potentials and increases the apparent Na(+) affinity of Na,K-ATPase. Finally, both short and long human FXYD3 induce a hyperpolarization activated current, similar to that induced by mouse FXYD3. Thus, we have characterized two human FXYD3 isoforms that are differentially expressed in differentiated and non-differentiated cells and show different functional properties.
Resumo:
Neuropeptide Y (NPY) is a widely expressed neurotransmitter in the central and peripheral nervous systems. Thymidine 1128 to cytocine substitution in the signal sequence of the preproNPY results in a single amino acid change where leucine is changed to proline. This L7P change leads to a conformational change of the signal sequence which can have an effect on the intracellular processing of NPY. The L7P polymorphism was originally associated with higher total and LDL cholesterol levels in obese subjects. It has also been associated with several other physiological and pathophysiological responses such as atherosclerosis and T2 diabetes. However, the changes on the cellular level due to the preproNPY signal sequence L7P polymorphism were not known. The aims of the current thesis were to study the effects of the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes in primary cultured and genotyped human umbilical vein endothelial cells (HUVEC), in neuroblastoma (SK-N-BE(2)) cells and in fibroblast (CHO-K1) cells. Also, the putative effects of the L7P polymorphism on proliferation, apoptosis and LDL and nitric oxide metabolism were investigated. In the course of the studies a fragment of NPY targeted to mitochondria was found. With the putative mitochondrial NPY fragment the aim was to study the translational preferences and the mobility of the protein. The intracellular distribution of NPY between the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes was found to be different. NPY immunoreactivity was prominent in the [p.L7]+[p.P7] cells while the proNPY immunoreactivity was prominent in the [p.L7]+[p.L7] genotype cells. In the proliferation experiments there was a difference in the [p.L7]+[p.L7] genotype cells between early and late passage (aged) cells; the proliferation was raised in the aged cells. NPY increased the growth of the cells with the [p.L7]+[p.P7] genotype. Apoptosis did not seem to differ between the genotypes, but in the aged cells with the [p.L7]+[p.L7] genotype, LDL uptake was found to be elevated. Furthermore, the genotype seemed to have a strong effect on the nitric oxide metabolism. The results indicated that the mobility of NPY protein inside the cells was increased within the P7 containing constructs. The existence of the mitochondria targeted NPY fragment was verified, and translational preferences were proved to be due to the origin of the cells. Cell of neuronal origin preferred the translation of mature NPY (NPY1-36) when compared to the non neuronal cells that translated both, NPY and the mitochondrial fragment of NPY. The mobility of the mitochondrial fragment was found to be minimal. The functionality of the mitochondrial NPY fragment remains to be investigated. L7P polymorphism in the preproNPY causes a series of intracellular changes. These changes may contribute to the state of cellular senescence, vascular tone and lead to endothelial dysfunction and even to increased susceptibility to diseases, like atherosclerosis and T2 diabetes.
Resumo:
Selective development of human T helper (Th) cells into functionally distinct Th1 and Th2 subtypes plays an essential role in the host immune response towards pathogens. However, abnormal function or differentiation of these cells can lead to development of various autoimmune diseases as well as asthma and allergy. Therefore, identification of key factors and the molecular mechanisms mediating Th1 and Th2 cell differentiation is important for understanding the molecular mechanisms of these diseases. The goal of this study was to identify novel factors involved in the regulation of Th1 and Th2 differentiation processes. A new method was optimized for enrichment of transiently transfected resting human primary T lymphocytes, that allowed the study of the influence of genes of interest in human Th1/Th2 cell differentiation and other primary Th cell functions. Functional characterization of PRELI, a novel activation-induced protein in human Th cells, identified it as a mitochondrial protein involved in the regulation of Th cell differentiation and apoptosis. By influencing the intracellular redox state, PRELI induces mitochondrial apoptosis pathway and downregulates STAT6 and Th2 differentiation. The data suggested that Calpain, an oxidative stress induced cysteine protease, is involved as a mediator in PRELI-induced downregulation of STAT6. PIM serine/threonine-specific kinases were identified as new regulators of human Th1 cell differentiation. PIM1 and PIM2 kinases were shown to be preferentially expressed in Th1 cells as compared to Th2 cells. RNA interference studies showed that PIM kinases enhance the production of IFN, the hallmark cytokine produced by Th1 cells. They also induce the expression of the key Th1-driving factor T-bet and the IL-12 signaling pathway during early phases of Th1 cell differentiation. Taken together, new regulators of human T helper cell differentiation were identified in this study, which provides new insights into the signaling mechanisms controlling the selective activation of human Th cell subsets.
Resumo:
The prevalence of inflammatory based diseases has increased in industrialized countries over the last decades. For allergic diseases, two primary hypotheses have been proposed to explain this phenomenon, namely the hygiene and dietary evolution based hypothesis. Particularly, the reduced early exposure to microbes and an increase in the amount of polyunsaturated fatty acids (especially n-6 PUFA) in the diet have been discussed. Often, these two factors have been studied independently, even though both factors have been shown to possess potential health benefits and their mode of action to share similar mechanisms. The hypothesis of the present study was that demonstrate that PUFA and probiotics are not separate entities as such but do interact with each other. In the present study, we investigated whether maternal diet and atopic status influence the PUFA composition of breast milk and serum fatty acids of infants, and whether the fatty acid absorption and utilization of infant formula fatty acids is affected by supplementation of infant formula with probiotic bacteria (Lactobacillus GG and Bifidobacterium lactis Bb-12). Moreover, we investigated the mechanisms by which different PUFA influence the physicochemical and functional properties of probiotics as well as functionality of epithelial cells in vitro. We demonstrated a carry-over effect of dietary fatty acids from maternal diet via breast milk into infants’ serum lipid fatty acids. Our data confirmed the previously shown allergy –related PUFA level imbalances, though it did not fully support the impaired desaturation and elongation capacity hypothesis. We also showed that PUFA incorporation into phospholipids of infants was influenced by probiotics in infant formula in a strain dependent manner. Especially,Bifidobacterium lactis Bb-12 in infant formula promoted the utilization of n-3 PUFA. Mechanistically, we demonstrated that probiotics (Lactobacillus GG, Lactobacillus casei Shirota and Lactobacillus bulgaricus) did incorporate and interconvert exogenous free PUFA in the growth medium into bacterial fatty acids strain and PUFA dependently. In general, high concentrations of free PUFA inhibited the growth and mucus adhesion of probiotics, whereas low concentrations of specific long chain PUFA were found to promote the growth and mucus adhesion of Lactobacillus casei Shirota. These effects were paralleled with only minor alterations in hydrophobicity and electron donor – electron acceptor properties of lactobacilli. Furthermore, free PUFA were also demonstrated to alter the adhesion capacity of the intestinal epithelial cells; n-6 PUFA tended to inhibit the Caco-2 adhesion of probiotics, whereas n-3 PUFA had either no or minor effects or even promote the bacterial adhesion (especially Lactobacillus casei Shirota) to PUFA treated Caco-2 cells. The results of this study demonstrate the close and bilateral interactions between dietary PUFA and probiotics. Probiotics were shown to influence the absorption and utilization of dietary PUFA, whereas PUFA were shown to alter the functional properties of both probiotics and mucosal epithelia. These findings suggest that a more thorough understanding of interactions between PUFA and intestinal microbiota is a prerequisite, when the beneficial effects of new functional foods containing probiotics are designed and planned for human intervention studies.
Resumo:
T helper (Th) cells are vital regulators of the adaptive immune system. When activated by presentation of cognate antigen, Th cells demonstrate capacity to differentiate into functionally distinct effector cell subsets. The Th2 subset is required for protection against extracellular parasites, such as helminths, but is also closely linked to pathogenesis of asthma and allergies. The intracellular molecular signal transduction pathways regulating T helper cell subset differentiation are still incompletely known. Moreover, great majority of studies regarding Th2 differentiation have been conducted with mice models, while studies with human cells have been fewer in comparison. The goal of this thesis was to characterize molecular mechanisms promoting the development of Th2 phenotype, focusing specifically on human umbilical cord blood T cells as an experimental model. These primary cells, activated and differentiated to Th2 cells in vitro, were investigated by complementary system-wide approaches, targeting levels of mRNA, proteins, and lipid molecules. Specifically, the results indicated IL4-regulated recruitment of nuclear protein, and described novel components of the Th2-promoting STAT6 enhanceosome complex. Furthermore, the development of the activated effector cell phenotype was found to correlate with remodeling of the cellular lipidome. These findings will hopefully advance the understanding of human Th2 cell lineage commitment and development of Th2-associated disease states.
Resumo:
Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.
Resumo:
CD4+ T helper (Th) cells have an important role in the defence against diverse pathogens. Th cells can differentiate into several functionally distinct subtypes including Th1 and Th2 cells. Th1 cells are important for eradicating intracellular pathogens, whereas Th2 cells pro¬tect our body against extracellular parasites. However if uncontrolled, Th cells can mediate immunopathology such as asthma or allergies, but inappropriate Th response can also lead to autoimmune diseases such as multiple sclerosis or type 1 diabetes. Deeper knowledge of the regulation of the lymphocyte response both in vitro and in vivo is important for un¬derstanding the pathogenesis of immune-mediated diseases and microbe-host interactions. In the work presented in this thesis, the first goal was to elucidate the role of novel factors, PIM kinases and c-FLIP in the regulation of human Th cell differentiation. The oncogenic serine-threonine kinases of the PIM family were shown to be preferentially expressed in Th1 cells and in addition, by using RNA interference, they were also shown to be positive regulators of Th1 differentiation. The PIM depletion experiments suggest that PIM kinases promote the expression of the hallmark cytokine of Th1 cells, IFNγ, and influence the IL12/STAT4 pathway during the early Th1 cell differentiation. In addition to cytokine and T cell receptor (TCR) induced pathways, caspase activity has been shown to regulate Th cell proliferation. In the work presented in this thesis, the two isoforms of the caspase regulator protein, c-FLIP, were shown to be differentially ex¬pressed in Th1 and Th2 cells. Both of the isoforms were up-regulated in response to TCR activation, but the expression of the short isoform was selectively induced by IL4, the Th2 inducing cytokine. Furthermore, the c-FLIP isoforms had distinct and opposite roles during the early differentiation of Th1 and Th2 cells. The knockdown of the long isoform of c-FLIP led to the induction of Th1 marker genes, such as IFNγ and TBET, whereas the depletion of c-FLIP short down-regulated Th2 marker genes IL-4 and GATA3. The third goal was to elucidate the gene expression profiles characterizing the T- and B-lymphocyte responses in vivo during experimental infection by intracellular bacte¬rium Chlamydia pneumoniae. Previously, it has been shown that CD8+ and CD4+ T cells are important for the protection against Chlamydia pneumoniae. In this study, the analysis revealed up-regulation of interferon induced genes during recurrent infection underlining the importance of IFNγ secreted by Th1 and CD8+ T cells in the protection against this pathogen. Taken together, in this study novel regulators of Th cell differ¬entiation were discovered and in addition the gene expression profiles of lymphocytes induced by Chlamydia pneumoniae infection were characterized.
Resumo:
One hypothesis for the increased incidence of atopic diseases has been that it is associated with changing dietary habits, especially the changed intake of essential fatty acids (EFAs). The metabolism of EFAs produces eiconasoids, prostaglandins and leukotrienes, which are essential to organs and play a major role in regulation of inflammation and immune response. In some studies persons with atopic dermatitis have been found to have reduced levels of EFAs. The first year of infancy as well as the foetal period are crucial for the development of atopic immune response. The composition of blackcurrant seed oil (BCSO) corresponds to the recommended ratio of EFAs n-3 and n-6 in the diet (1/3-1/4) and as a dietary supplement could, even in small doses, modify the unbalance of EFAs in an efficient way. The purpose of this study was to find out whether atopic allergies can be prevented by supplementing the diet of pregnant mothers with blackcurrant seed oil and whether it could affect the immunological balance of a child. We also sought to find out whether a blackcurrant seed oil supplementation can affect the composition of breast milk to suppress the T helper 2 lymphocyte (Th2) responses in infants. 313 pregnant mothers were randomly assigned to receive BCSO (n=151) or olive oil as placebo (n=162). Supplementation was started at the 8th to 16th weeks of pregnancy, 6 capsules per day (dose of 3 g), and continued until the cessation of breastfeeding. It was thereafter followed by direct supplementation to infants of 1 ml (1 g) of oil per day until the age of two years. Atopic dermatitis and its severity (SCORAD index) were evaluated, serum total IgE was measured and skin prick tests were performed at the age of 3, 12 and 24 months. Peripheral blood mononuclear cell (PBMC) samples were taken at the age of 3 and 12 months and breast milk samples were collected during the first 3 months of breastfeeding. Parental atopy was common (81.7%) in the studied infants, making them infants with increased atopy risk. There was a significantly lower prevalence of atopic dermatitis in the BCSO group (33%) than in the olive oil group (47%) at the age of 12 months. Also, SCORAD was lower in the BCSO group than in the olive oil group. Dietary intervention with BCSO had immunomodulatory effects on breast milk, inducing cytokine production from Th2 to Th1 immunodeviation. It decreased the level of IL-4 and elevated the level of IFN-γ. BCSO intervention did not affect cytokines in the children’s PBMC. However, children of smoking parents in the combined BCSO and olive oil group had significantly elevated levels of Th2 type cytokines IL-4, IL-5 and the proinflammator cytokine TNF. Dietary supplementation with BCSO is safe. It is well tolerated and transiently reduces the prevalence of atopic dermatitis at the age of 12 months. It can possibly become a potential tool in prevention of atopic symptoms when used at the early stages of life.
Resumo:
The aortic-pulmonary regions (APR) of seven adult marmosets (Callithrix jacchus) and the region of the right subclavian artery of a further three marmosets were diffusion-fixed with 10% buffered formol-saline solution. In both regions serial 5-µm sections were cut and stained by the Martius yellow, brilliant crystal scarlet and soluble blue method. Presumptive thoracic paraganglionic (PTP) tissue was only observed in the APR. PTP tissue was composed of small groups of cells that varied in size and number. The distribution of the groups of cells was extremely variable, so much so that it would be misleading to attempt to classify their position; they were not circumscribed by a connective tissue capsule, but were always related to the thoracic branches of the left vagus nerve. The cells lay in loose areolar tissue characteristic of this part of the mediastinum and received their blood supply from small adjacent connective tissue arterioles. Unlike the paraganglionic tissue found in the carotid body the cells in the thorax did not appear to have a profuse capillary blood supply. There was, however, a close cellular-neural relationship. The cells, 10-15 µm in diameter, were oval or rounded in appearance and possessed a central nucleus and clear cytoplasm. No evidence was found that these cells possessed a 'companion' cell reminiscent of the arrangement of type 1 and type 2 cells in the carotid body. In conclusion, we found evidence of presumed paraganglionic tissue in the APR of the marmoset which, however, did not show the characteristic histological features of the aortic body chemoreceptors that have been described in some non-primate mammals. A survey of the mediastina of other non-human primates is required to establish whether this finding is atypical for these animals.
Resumo:
In a one-year prospective study carried out to define the role of rotavirus and Escherichia coli in local childhood diarrhea, we determined the prevalence of both agents in 54 diarrheic children attending a health center in Botucatu. Diarrheogenic E. coli (DEC) strains were characterized by O:H serotyping, a search for virulence genetic markers, and assays of adherence to HEp-2 cells. Except for enteroaggregative E. coli (EAEC), no other DEC category was detected in the children's stools. Both EAEC and rotavirus were isolated from 22 of the 54 (41.0%) diarrheic children as single agents or in combination with other enteropathogens. However, when considering the presence of a single agent, EAEC was dominant and isolated from 20.4% of the patients, whereas rotavirus was detected in 14.8%. These results indicate that rotavirus and EAEC play a significant role as agents of childhood diarrhea in the local population.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by intense polyclonal production of autoantibodies and circulating immune complexes. Some reports have associated SLE with a Th2 immune response and allergy. In the present study 21 female patients with SLE were investigated for total IgE and IgE antibodies to dust house aeroallergens by an automated enzyme-linked fluorescent assay, and were also evaluated for antinuclear IgE autoantibodies by a modified indirect immunofluorescence test using HEp-2 cells as antigen substrate. Additionally, immunocapture ELISA was used to investigate serum anti-IgE IgG autoantibodies. Serum IgE above 150 IU/ml, ranging from 152 to 609 IU/ml (median = 394 IU IgE/ml), was observed in 7 of 21 SLE patients (33%), 5 of them presenting proteinuria, urinary cellular casts and augmented production of anti-dsDNA antibodies. While only 2 of 21 SLE patients (9.5%) were positive for IgE antibodies to aeroallergens, all 10 patients with respiratory allergy (100%) from the atopic control group (3 males and 7 females), had these immunoglobulins. SLE patients and healthy controls presented similar anti-IgE IgG autoantibody titers (X = 0.37 ± 0.20 and 0.34 ± 0.18, respectively), differing from atopic controls (0.94 ± 0.26). Antinuclear IgE autoantibodies were detected in 17 of 21 (81%) sera from SLE patients, predominating the fine speckled pattern of fluorescence, that was also observed in IgG-ANA. Concluding, SLE patients can present increased IgE levels and antinuclear IgE autoantibodies without specific clinical signs of allergy or production of antiallergen IgE antibodies, excluding a possible association between SLE and allergy.
Resumo:
Invasive diseases caused by Corynebacterium diphtheriae have been described increasingly. Several reports indicate the destructive feature of endocarditis attributable to nontoxigenic strains. However, few reports have dealt with the pathogenicity of invasive strains. The present investigation demonstrates a phenotypic trait that may be used to identify potentially invasive strains. The study also draws attention to clinical and microbiological aspects observed in 5 cases of endocarditis due to C. diphtheriae that occurred outside Europe. Four cases occurred in female school-age children (7-14 years) treated at different hospitals in Rio de Janeiro, Brazil. All patients developed other complications including septicemia, renal failure and/or arthritis. Surgical treatment was performed on 2 patients for valve replacement. Lethality was observed in 40% of the cases. Microorganisms isolated from 5 blood samples and identified as C. diphtheriae subsp mitis (N = 4) and C. diphtheriae subsp gravis (N = 1) displayed an aggregative adherence pattern to HEp-2 cells and identical one-dimensional SDS-PAGE protein profiles. Aggregative-adhering invasive strains of C. diphtheriae showed 5 distinct RAPD profiles. Despite the clonal diversity, all 5 C. diphtheriae invasive isolates seemed to display special bacterial adhesive properties that may favor blood-barrier disruption and systemic dissemination of bacteria. In conclusion, blood isolates from patients with endocarditis exhibited a unique adhering pattern, suggesting a pathogenic role of aggregative-adhering C. diphtheriae of different clones in endocarditis. Accordingly, the aggregative-adherence pattern may be used as an indication of some invasive potential of C. diphtheriae strains.
Resumo:
Intermediate filament keratins (K) play a pivotal role in protein targeting and epithelialcytoprotection from stress as evidenced by keratin mutations predisposing to human liver and skin diseases and possibly inflammatory bowel disease (IBD). The K8-null (K8-/-) mice exhibit colonic phenotype similar to IBD and marked spontaneous colitis, epithelial hyperproliferation, decreased apoptosis, mistargeting of proteins leading to defective ion transport and diarrhea. The K8-heterozygote (K8+/-) mouse colon appears normal but displays a defective sodium (Na+) and chloride (Cl-) transport similar to, but milder than K8-/-. Characterization of K8+/- colon revealed ~50% less keratins (K7, K8, K19, K20) compared to K8 wild type (K8+/+). A similar ~50% decrease was seen in K8+/- mRNA levels as compared to K8+/+, while the mRNA levels for the other keratins were unaltered. K8+/- keratins were arranged in a normal colonic crypt expression pattern, except K7 which was expressed at the top of crypts in contrast to K8+/+. The K8+/- colon showed mild hyperplasia but no signs of inflammation and no resistance to apoptosis. Experimental colitis induced by using different concentrations of dextran sulphate sodium (DSS) showed that K8+/- mice are slightly more sensitive to induced colitis and showed a delayed recovery compared to K8+/+. Hence, the K8+/- mouse with less keratins and without inflammation, provided a novel model to study direct molecular mechanisms of keratins in intestinal homeostasis and ion transport. Different candidate ion transporters for a possible role in altered ion transport seen in the K8-/- and K8+/- mouse colon were evaluated. Besides normal levels of CFTR, PAT-1 and NHE-3, DRA mRNA levels were decreased 3-4-fold and DRA protein nearly entirely lost in K8-/- caecum, distal and proximal colon compared to K8+/+. In K8+/- mice, DRA mRNA levels were unaltered while decreased DRA protein level and patchy distribution was detected particularly in the proximal colon and as compared to K8+/+. DRA was similarly decreased when K8 was knocked-down in Caco-2 cells, confirming that K8 levels modulate DRA levels in an inflammation-independent manner. The dramatic loss of DRA in colon and caecum of K8-/- mice was responsible for the chloride transport defect. The milder ion transport in K8+/- colon might be related to DRA suggesting a role for K8 in regulation of DRA expression and targeting. The current study demonstrates the importance of keratins in stress protection and cell signaling. Furthermore, we have also successfully developed a novel, simple, fast, cost effective, non-invasive in vivo imaging method for the early diagnosis of murine colitis with specificity for both genetic and experimental colitis. The said modality provides continuous measurements of reactive oxygen and nitrogen species (RONS) and minimizes the use of an increased number of experimental animals by using a luminal derivative chemiluminescent probe, L-012 which provides a cost-effective tool to study the level and longitudinal progression of colitis.
Resumo:
CD4+ T lymphocytes play an important role in CD8+ T cell-mediated responses against tumors. Considering that about 20% of melanomas express major histocompatibility complex (MHC) class II, it is plausible that concomitant antigenic presentation by MHC class I and class II complexes shapes positive (helper T cells) or negative (regulatory T cells) anti-tumor responses. Interestingly, gp100, a melanoma antigen, can be presented by both MHC class I and class II when expressed endogenously, suggesting that it can reach endosomal/MHC class II compartments (MIIC). Here, we demonstrated that the gp100 putative amino-terminal signal sequence and the last 70 residues in carboxy-terminus, are essential for MIIC localization and MHC class II presentation. Confocal microscopy analyses confirmed that gp100 was localized in LAMP-1+ endosomal/MIIC. Gp100-targeting sequences were characterized by deleting different sections in the carboxy-terminus (residues 590 to 661). Transfection in 293T cells, expressing MHC class I and class II molecules, revealed that specific deletions in carboxy-terminus resulted in decreased MHC class II presentation, without effects on MHC class I presentation, suggesting a role in MIIC trafficking for these deleted sections. Then, we used these gp100-targeting sequences to mobilize the green fluorescent protein (GFP) to endosomal compartments, and to allow MHC class II and class I presentation of minimal endogenous epitopes. Thus, we concluded that these specific sequences are MIIC targeting motifs. Consequently, these sequences could be included in expression cassettes for endogenously expressed tumor or viral antigens to promote MHC class II and class I presentation and optimize in vivo T cell responses, or as an in vitro tool for characterization of new MHC class II epitopes.
Resumo:
HHV-6 is a ubiquitous human herpesvirus. Most individuals become infected at the age of 2 years. Primary infection by the virus causes a self-limiting febrile illness called exanthem subitum or roseola. In adults, primary infection may cause mononucleosis-like illnesses. The infection usually remains latent in healthy individuals, but often reactivates in immunocompromised individuals, for example, transplant patients and AIDS patients. The virus has also been associated with cancers and lymphoproliferative disorders. The virus encodes two proteins that interact with p53. However, little is known concerning the impact of the virus on cell cycle progression in human cells. The investigations reported in the thesis were focused on this issue. We show here that that HHV-6 infection delays the cell cycle progression in human T cell line HSB-2, as well as in primary human T cells and causes their accumulation in S and G2/M phase. By degrading the viral DNA in the virus-infected cells, we show that the infected cells accumulate in the G2/M and not in the S phase. We observed an increase in the kinase activity of cdc2 in virus-infected cells despite lower levels of its catalytic partners, cyclin A and cyclin B. We show here that the viral early antigen p41 associates with, and increases the kinase activity of, CDK1. Our studies have shown that there is a drastic reduction of p21 protein, despite the virus-induced stabilization and activation of p53 suggesting that p53 may be transcriptionally inactivated in the virus-infected cells. This decrease of p21 in infected cells was partially restored by proteasome inhibitors. These results suggest that HHV-6 causes perturbations in the normal progression of cell cycle in human T cells. Autophagy is a physiological cell process during which old cellular constituents and long-lived proteins in cells are degraded. This process is regulated in a cell cycle-dependent manner. We show here that infection with HHV-6 induces autophagy in HSB-2 cells. This was shown by the induction of LC-3 II as well as by the appearance of autophagic vacuoles in the virus-infected cells. However, we found that the virus inhibits fusion between autophagic vacuoles and lysosomes formed in infected cells, thus evading the autophagic response of infected host cells. Finally we tried to investigate replication of the virus in human cells in the absence of P53; a tumor suppressor gene which is also known as "the guardian of the genome ". During these investigations, we found that that inhibition of p53 gene expression mediated by siRNA as well as its inhibition by pharmacological inhibitors leads to massive cell death in human T cell line HSB-2 that carries a wild-type p53. We show that this death also occurs in another cell line CEM, which carries a transcriptionally mutated p53. Interestingly, the cell death could be prevented by pharmacological inhibitors of autophagy and necroptosis. Taken together, our results provide important novel insights concerning the impact of HHV-6 on cell cycle regulation and autophagy as well as of basal level p53 in cell survival.