945 resultados para Surface wave methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oscillating wave surge converters are a promising technology to harvest ocean wave energy in the near shore region. Although research has been going on for many years, the characteristics of the wave action on the structure and especially the phase relation between the driving force and wave quantities like velocity or surface elevation have not been investigated in detail. The main reason for this is the lack of suitable methods. Experimental investigations using tank tests do not give direct access to overall hydrodynamic loads, only damping torque of a power take off system can be measured directly. Non-linear computational fluid dynamics methods have only recently been applied in the research of this type of devices. This paper presents a new metric named wave torque, which is the total hydrodynamic torque minus the still water pitch stiffness at any given angle of rotation. Changes in characteristics of that metric over a wave cycle and for different power take off settings are investigated using computational fluid dynamics methods. Firstly, it is shown that linearised methods cannot predict optimum damping in typical operating states of OWSCs. We then present phase relationships between main kinetic parameters for different damping levels. Although the flap seems to operate close to resonance, as predicted by linear theory, no obvious condition defining optimum damping is found.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop a methodology using Raman hyperspectral imaging and chemometric methods for identification of pre- and post-blast explosive residues on banknote surfaces. The explosives studied were of military, commercial and propellant uses. After the acquisition of the hyperspectral imaging, independent component analysis (ICA) was applied to extract the pure spectra and the distribution of the corresponding image constituents. The performance of the methodology was evaluated by the explained variance and the lack of fit of the models, by comparing the ICA recovered spectra with the reference spectra using correlation coefficients and by the presence of rotational ambiguity in the ICA solutions. The methodology was applied to forensic samples to solve an automated teller machine explosion case. Independent component analysis proved to be a suitable method of resolving curves, achieving equivalent performance with the multivariate curve resolution with alternating least squares (MCR-ALS) method. At low concentrations, MCR-ALS presents some limitations, as it did not provide the correct solution. The detection limit of the methodology presented in this study was 50μgcm(-2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the ocular surface toxicity of two nitric oxide donors in ex vivo and in vivo animal models: S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC) in a hydroxypropyl methylcellulose (HPMC) matrix at final concentrations 1.0 and 10.0 mM. METHODS: Ex vivo GSNO and SNAC toxicities were clinically and histologically analyzed using freshly excised pig eyeballs. In vivo experiments were performed with 20 albino rabbits which were randomized into 4 groups (5 animals each): Groups 1 and 2 received instillations of 150 µL of aqueous HPMC solution containing GSNO 1.0 and 10.0 mM, respectively, in one of the eyes; Groups 3 and 4 received instillations of 150 µL of aqueous HPMC solution-containing SNAC 1.0 and 10.0 mM, respectively, in one of the eyes. The contralateral eyes in each group received aqueous HPMC as a control. All animals underwent clinical evaluation on a slit lamp and the eyes were scored according to a modified Draize eye test and were histologically analyzed. RESULTS: Pig eyeballs showed no signs of perforation, erosion, corneal opacity or other gross damage. These findings were confirmed by histological analysis. There was no difference between control and treated rabbit eyes according to the Draize eye test score in all groups (p>0.05). All formulations showed a mean score under 1 and were classified as non-irritating. There was no evidence of tissue toxicity in the histological analysis in all animals. CONCLUSION: Aqueous HPMC solutions containing GSNO and SNAC at concentrations up to 10.0 mM do not induce ocular irritation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05). RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the following acrylic resins: Clássico®, QC-20® and Lucitone®, recommended specifically for thermal polymerization, and Acron MC® and VIPI-WAVE®, made for polymerization by microwave energy. The resins were evaluated regarding their surface nanohardness and modulus of elasticity, while varying the polymerization time recommended by the manufacturer. They were also compared as to the presence of water absorbed by the samples. The technique used was nanoindentation, using the Nano Indenter XP®, MTS. According to an intra-group analysis, when using the polymerization time recommended by the manufacturer, a variation of 0.14 to 0.23 GPa for nanohardness and 2.61 to 3.73 GPa for modulus of elasticity was observed for the thermally polymerized resins. The variation for the resins made for polymerization by microwave energy was 0.15 to 0.22 GPa for nanohardness and 2.94 to 3.73 GPa for modulus of elasticity. The conclusion was that the Classico® resin presented higher nanohardness and higher modulus of elasticity values when compared to those of the same group, while Acron MC® presented the highest values for the same characteristics when compared to those of the same group. The water absorption evaluation showed that all the thermal polymerization resins, except for Lucitone®, presented significant nanohardness differences when submitted to dehydration or rehydration, while only Acron MC® presented no significant differences when submitted to a double polymerization time. Regarding the modulus of elasticity, it was observed that all the tested materials and products, except for Lucitone®, showed a significant increase in modulus of elasticity when submitted to a lack of hydration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to compare the electromyography index of muscle coactivation of the following muscle pairs: posterior deltoid and pectoralis major (PD/PM); triceps brachii and biceps brachii (TB/BB); and serratus anterior and upper trapezius (SA/UT) during three different closed kinetic chain exercises (wall-press, bench-press and push-up) on an unstable surface at the maximal load. Methods: A total of 20 healthy sedentary men participated in the study. Integral linear values were obtained from three sustained contractions of six seconds each for the three proposed exercises. Mean coactivation index values were compared using the mixed-effects linear model, with a five percent significance level. Results: Electromyography indexes of muscle coactivation showed significant differences for the PD/PM and TB/BB muscle pairs. No differences were found between exercises for the SA/UT muscle pair. Conclusion: Our results seem to differ from those of previous studies, which reported that the similarity in exercises performed is responsible for the comparable muscle activation levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this in vitro study was to evaluate the dentine root surface roughness and the adherence of Streptococcus sanguinis (ATCC 10556) after treatment with an ultrasonic system, Er:YAG laser, or manual curette. Background Data: Bacterial adhesion and formation of dental biofilm after scaling and root planing may be a challenge to the long-term stability of periodontal therapy. Materials and Methods: Forty flattened bovine roots were randomly assigned to one of the following groups: ultrasonic system (n = 10); Er:YAG laser (n = 10); manual curette (n = 10); or control untreated roots (n = 10). The mean surface roughness (Ra, mu m) of the specimens before and after exposure to each treatment was determined using a surface profilometer. In addition, S. sanguinis was grown on the treated and untreated specimens and the amounts of retained bacteria on the surfaces were measured by culture method. Results: All treatments increased the Ra; however, the roughest surface was produced by the curettes. In addition, the specimens treated with curettes showed the highest S. sanguinis adhesion. There was a significant positive correlation between roughness values and bacterial cells counts. Conclusion: S. sanguinis adhesion was the highest on the curette-treated dentine root surfaces, which also presented the greatest surface roughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To evaluate the adhesion of the endodontic sealers Epiphany, Apexit Plus, and AH Plus to root canal dentin submitted to different surface treatments, by using the push-out test. Methods: One hundred twenty-eight root cylinders obtained from maxillary canines were embedded in acrylic resin, had the canals prepared, and were randomly assigned to four groups (n = 32), according to root dentin treatment: (I) distilled water (control), (II) 17% EDTAC, (III) 1% NaOCl and (IV) Er:YAG laser with 16-Hz, 400-mJ input (240-mJ output) and 0.32-J/cm(2) energy density. Each group was divided into four subgroups (n = 8) filled with Epiphany (either dispensed from the automix syringe supplied by the manufacturer or prepared by hand mixing), Apexit Plus, or AH Plus. Data (MPa) were analyzed by ANOVA and Tukey's test. Results: A statistically significant difference (p < 0.01) was found among the root-canal sealers, except for the Epiphany subgroups, which had statistically similar results to each other (p > 0.01): AH Plus (4.77 +/- 0.85), Epiphany/hand mixed (3.06 +/- 1.34), Epiphany/automix syringe (2.68 +/- 1.35), and Apexit Plus (1.22 +/- 0.33). A significant difference (p < 0.01) was found among the dentin surface treatments. The highest adhesion values were obtained with AH Plus when root dentin was treated with Er: YAG laser and 17% EDTAC. Epiphany sealer presented the lowest adhesion values to root dentin treated with 17% EDTAC. Conclusions: The resin-based sealers had different adhesive behaviors, depending on the treatment of root canal walls. The mode of preparation of Epiphany (automix syringe or hand mixing) did not influence sealer adhesion to root dentin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. Background Data: There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Materials and Methods: Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Results: Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). Conclusion: When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the seasonal and diurnal variations of downward longwave atmospheric irradiance (LW) at the surface in Sao Paulo, Brazil, using 5-min-averaged values of LW, air temperature, relative humidity, and solar radiation observed continuously and simultaneously from 1997 to 2006 on a micrometeorological platform, located at the top of a 4-story building. An objective procedure, including 2-step filtering and dome emission effect correction, was used to evaluate the quality of the 9-yr-long LW dataset. The comparison between LW values observed and yielded by the Surface Radiation Budget project shows spatial and temporal agreement, indicating that monthly and annual average values of LW observed in one point of Sao Paulo can be used as representative of the entire metropolitan region of Sao Paulo. The maximum monthly averaged value of the LW is observed during summer (389 +/- 14 W m(-2): January), and the minimum is observed during winter (332 +/- 12 W m(-2); July). The effective emissivity follows the LW and shows a maximum in summer (0.907 +/- 0.032; January) and a minimum in winter (0.818 +/- 0.029; June). The mean cloud effect, identified objectively by comparing the monthly averaged values of the LW during clear-sky days and all-sky conditions, intensified the monthly average LW by about 32.0 +/- 3.5 W m(-2) and the atmospheric effective emissivity by about 0.088 +/- 0.024. In August, the driest month of the year in Sao Paulo, the diurnal evolution of the LW shows a minimum (325 +/- 11 W m(-2)) at 0900 LT and a maximum (345 12 W m-2) at 1800 LT, which lags behind (by 4 h) the maximum diurnal variation of the screen temperature. The diurnal evolution of effective emissivity shows a minimum (0.781 +/- 0.027) during daytime and a maximum (0.842 +/- 0.030) during nighttime. The diurnal evolution of all-sky condition and clear-sky day differences in the effective emissivity remain relatively constant (7% +/- 1%), indicating that clouds do not change the emissivity diurnal pattern. The relationship between effective emissivity and screen air temperature and between effective emissivity and water vapor is complex. During the night, when the planetary boundary layer is shallower, the effective emissivity can be estimated by screen parameters. During the day, the relationship between effective emissivity and screen parameters varies from place to place and depends on the planetary boundary layer process. Because the empirical expressions do not contain enough information about the diurnal variation of the vertical stratification of air temperature and moisture in Sao Paulo, they are likely to fail in reproducing the diurnal variation of the surface emissivity. The most accurate way to estimate the LW for clear-sky conditions in Sao Paulo is to use an expression derived from a purely empirical approach.