1000 resultados para Surface geochemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Taupo Volcanic Zone (TVZ), central North Island, New Zealand, is the most frequently active Quaternary rhyolitic system in the world. Silicic tephras recovered from Ocean Drilling Programme Site 1123 (41°47.16'S, 171°29.94'W; 3290 m water depth) in the southwest Pacific Ocean provide a well-dated record of explosive TVZ volcanism since ~1.65 Ma. We present major, minor and trace element data for 70 Quaternary tephra layers from Site 1123 determined by electron probe microanalysis (1314 analyses) and laser ablation inductively coupled plasma mass spectrometry (654 analyses). Trace element data allow for the discrimination of different tephras with similar major element chemistries and the establishment of isochronous tie-lines between three sediment cores (1123A, 1123B and 1123C) recovered from Site 1123. These tephra tie-lines are used to evaluate the stratigraphy and orbitally tuned stable isotope age model of the Site 1123 composite record. Trace element fingerprinting of tephras identifies ~4.5 m and ~7.9 m thick sections of repeated sediments in 1123A (49.0-53.5 mbsf [metres below seafloor]) and 1123C (48.1-56.0 mbsf), respectively. These previously unrecognised repeated sections have resulted in significant errors in the Site 1123 composite stratigraphy and age model for the interval 1.15-1.38 Ma and can explain the poor correspondence between d18O profiles for Site 1123 and Site 849 (equatorial Pacific) during this interval. The revised composite stratigraphy for Site 1123 shows that the 70 tephra layers, when correlated between cores, correspond to ~37-38 individual eruptive events (tephras), 7 of which can be correlated to onshore TVZ deposits. The frequency of large-volume TVZ-derived silicic eruptions, as recorded by the deposition of tephras at Site 1123, has not been uniform through time. Rather it has been typified by short periods (25-50 ka) of intense activity bracketed by longer periods (100-130 ka) of quiescence. The most active period (at least 1 event per 7 ka) occurred between ~1.53 and 1.66 Ma, corresponding to the first ~130 ka of TVZ rhyolitic magmatism. Since 1.2 Ma, ~80% of tephras preserved at Site 1123 and the more proximal Site 1124 were erupted and deposited during glacial periods. This feature may reflect either enhanced atmospheric transport of volcanic ash to these sites (up to 1000 km from source) during glacial conditions or, more speculatively, that these events are triggered by changes in crustal stress accumulation associated with large amplitude sea-level changes. Only 8 of the ~37-38 Site 1123 tephra units (~20%) can be found in all three cores, and 22 tephra units (~60%) are only present in one of the three cores. Whether a tephra is preserved in all three cores does not have any direct relationship to eruptive volume. Instead it is postulated that tephra preservation at Site 1123 is 'patchy' and influenced by the vigorous nature of their deposition to the deep ocean floor as vertical density currents. At this site, at least 5 cores would need to have been drilled within a proximity of 10's to 100's of metres of each other to yield a >99% chance of recovering all the silicic tephras deposited on the ocean surface above it in the past 1.65 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mariana arc-trench system, the easternmost of a series of backarc basins and intervening remnant arcs that form the eastern edge of the Philippine Sea Plate, is a well-known example of an intraoceanic convergence zone. Its evolution has been studied by numerous investigators over nearly two decades (e.g., Kang, 1971; Uyeda and Kanamori, 1979; LaTraille and Hussong, 1980; Fryer and Hussong, 1981; Mrosowski et al., 1982; Hussong and Uyeda, 1981; Bloomer and Hawkins, 1983; Karig and Ranken, 1983; McCabe and Uyeda, 1983; Hsui and Youngquist, 1985; Fryer and Fryer, 1987; Johnson and Fryer, 1988; Johnson and Fryer, 1989; Johnson et al., 1991). The Mariana forearc has undergone extensive vertical uplift and subsidence in response to seamount collision, to tensional and rotational fracturing associated with adjustments to plate subduction, and to changes in the configuration of the arc (Hussong and Uyeda, 1981; Fryer et al., 1985). Serpentine seamounts, up to 2500 m high and 30 km in diameter, occur in a broad zone along the outer-arc high (Fryer et al., 1985; Fryer and Fryer, 1987). These seamounts may be horsts of serpentinized ultramafic rocks or may have been formed by the extrusion of serpentine muds. Conical Seamount, one of these serpentine seamounts, is located within this broad zone of forearc seamounts, about 80 km from the trench axis, at about 19°30'N. The seamount is approximately 20 km in diameter and rises 1500 m above the surrounding seafloor. Alvin submersible, R/V Sonne bottom photography, seismic reflection, and SeaMARC II studies indicate that the surface of this seamount is composed of unconsolidated serpentine muds that contain clasts of serpentinized ultramafic and metamorphosed mafic rocks, and authigenic carbonate and silicate minerals (Saboda et al., 1987; Haggerty, 1987; Fryer et al., 1990; Saboda, 1991). During Leg 125, three sites were drilled (two flank sites and one summit site) on Conical Seamount to investigate the origin and evolution of the seamount. Site 778 (19°29.93'N, 146°39.94'E) is located in the midflank region of the southern quadrant of Conical Seamount at a depth of 3913.7 meters below sea level (mbsl) (Fig. 2). This site is located in the center of a major region of serpentine flows (Fryer et al., 1985, 1990). Site 779 (19°30.75'N, 146°41.75'E), about 3.5 km northeast of Site 778, is located approximately in the midflank region of the southeast quadrant of Conical Seamount, at a depth of 3947.2 mbsl. This area is mantled by a pelagic sediment cover, overlying exposures of unconsolidated serpentine muds that contain serpentinized clasts of mafic and ultramafic rocks (Fryer et al., 1985, 1990). Site 780 (19°32.5'N, 146°39.2'E) is located on the western side of Conical Seamount near the summit, at a depth of 3083.4 mbsl. This area is only partly sediment covered and lies near active venting fields where chimney structures are forming (Fryer et al., 1990).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The <63-µm fractions of serpentinite muds from two seamounts on the Mariana and Izu-Bonin forearcs were analyzed for mineral composition by X-ray diffraction and for chemical composition by X-ray fluorescence. The silt fraction of the muds consists predominantly of chrysotile, brucite, and ample amorphous constituents. Chlorite and smectite are less abundant components. Of special interest is the occurrence of iowaite, a brucite-like, Cl-bearing mineral with a layered structure. Iowaite was not found in the samples from the summit site of one of the seamounts drilled; however, it is scattered throughout the strata, composing the flanks of both seamounts investigated. No systematic change of the iowaite abundance with depth was observed. The distribution of iowaite is confined to the surface of the flanks of the seamount. Based on the distribution on the mineral and its chemical composition, we suggest that the iowaite formed by oxidation of some of the ferrous iron in brucite contained in the serpentine mud as it contacted abyssal seawater during protrusion onto the seafloor. The resulting positive charge imparted to the brucite was compensated by the uptake of seawater chloride. Consequently, the formation of iowaite is restricted to the seafloor where oxygen and chloride are available for these reactions. The availability of oxygen is considered the limiting factor. We conclude that iowaite formation cannot be a major cause for the low chlorinity of pore fluids inside the seamounts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for onsite application of X-ray fluorescence (XRF) spectrometry to samples from sediment cores aboard a research vessel was developed and tested. The method is sufficiently simple, precise, and fast to be used routinely for high-resolution analyses of depth profiles as well as surface samples. Analyses were performed with the compact high-performance energy-dispersive polarisation X-ray fluorescence (EDPXRF) analyser Spectro Xepos. Contents of the elements Si, Ti, Al, Fe, Mn, Mg, Ca, K, Sr, Ba, Rb, Cu, Ni, Zn, P, S, Cl and Br were simultaneously determined on 200-225 samples of each core within 24 h of recovery. This study presents a description of the employed shipboard preparation and analysis technique, along with some example data. We show land-based datasets that support our decisions to use powder samples and to reduce the original measuring time for onboard analyses. We demonstrate how well the results from shipboard measurements for the various elements compare with the land-based findings. The onboard geochemical data enabled us to establish an element stratigraphy already during the cruise. Correlation of iron, calcium and silicon enrichment trends with an older reference core provided an age model for the newly retrieved cores. The Spectro Xepos instrument performed without any analytical and technical difficulties which could have been caused by rougher weather conditions or continuous movement and vibration of the research vessel. By now, this XRF technique has been applied during three RV Meteor cruises to approximately 5,000 Late Quaternary sediment samples from altogether 23 gravity cores, 25 multicorer cores and two box cores from the eastern South Atlantic off South Africa/Namibia and the eastern Atlantic off NW Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continental and marine conditions during the last millennium off Porto, Portugal (the southern pole of the North Atlantic Oscillation, NAO), are reconstructed from a sediment archive through a high-resolution multiproxy study and instrumental evidence. Results show multidecadal variability and sea surface temperatures (SSTs) that correlate well with previously published land and sea-based Northern Hemisphere temperature records, and appear to be responding to long-term solar insolation variability. Precipitation was negatively correlated with the NAO, whereas strong flooding events occurred at times of marked climate cooling (AD 1100-1150 and 1400-1470) and transitions in solar activity. AD 1850 marks a major shift in the phytoplankton community associated with a decoupling of d18O records of 3 planktonic foraminifera species. These changes are interpreted as a response to a reduction in the summer and/or annual upwelling and more frequent fall-winter upwelling-like events. This shift's coincidence with a decrease in SST and the increase in coherence between our data and the Atlantic Multidecadal Oscillation (AMO) confirms the connection of the upwelling variability to the North Atlantic Ocean's surface and thermohaline circulation on a decadal scale. The disappearance of this agreement between the AMO and our records beyond AD 1850 and its coincidence with the beginning of the recent rise in atmospheric CO2 supports the hypothesis of a strong anthropogenic effect on the last ~150 yr of the climate record. Furthermore, it raises an important question of the use of instrumental records as the sole calibration data set for climate reconstructions, as these may not provide the best analogue for climate beyond AD 1730.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.