484 resultados para Suites (Harpsichord)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread Lower Cretaceous magmatism occurred along the Indian-Australian/Antarctic margins, and in the juvenile Indian Ocean, during the rifting of eastern Gondwana. The formation of this magmatic province probably began around 120-130 Ma with the eruption of basalts on the Naturaliste Plateau and at Bunbury, western Australia. On the northeast margin of India, activity began around 117 Ma with the Rajmahal continental basalts and associated lamprophyre intrusions. The formation of the Kerguelen Plateau in the Indian Ocean began no later than 114 Ma. Ultramafic lamprophyres (alnoites) were emplaced in the Prince Charles Mountains near the Antarctic continental margin at ~ 110 Ma. These events are considered to be related to a major mantle plume, the remnant of which is situated beneath the region of Kerguelen and Heard islands at the present day. Geochemical data are presented for each of these volcanic suites and are indicative of complex interactions between asthenosphere-derived magmas and the continental lithosphere. Kerguelen Plateau basalts have Sr and Nd isotopic compositions lying outside the field for Indian Ocean mid-ocean ridge basalts (MORB) but, with the exception of Site 738 at the southern end of the plateau, within the range of more recent hotspot basalts from Kerguelen and Heard Islands. However, a number of the plateau tholeiites are characterized by lower 206Pb/204Pb ratios than are basalts from Kerguelen Island, and many also have anomalously high La/Nb ratios. These features suggest that the source of the Kerguelen Plateau basalts suffered contamination by components derived from the Gondwana continental lithosphere. An extreme expression of this lithospheric signature is shown by a tholeiite from Site 738, suggesting that the southernmost part of the Kerguelen Plateau may be underlain by continental crust. The Rajmahal tholeiites mostly fall into two distinct geochemical groups. Some Group I tholeiites have Sr and Nd isotopic compositions and incompatible element abundances, similar to Kerguelen Plateau tholeiites from Sites 749 and 750, indicating that the Kerguelen-Heard mantle plume may have directly furnished Rajmahal volcanism. However, their elevated 207Pb/204Pb ratios indicate that these magmas did not totally escape contamination by continental lithosphere. In contrast to the Group I tholeiites, significant contamination is suggested for Group II Rajmahal tholeiites, on the basis of incompatible element abundances and isotopic compositions. The Naturaliste Plateau and the Bunbury Basalt samples show varying degrees of enrichment in incompatible elements over normal MORB. The Naturaliste Plateau samples (and Bunbury Basalt) have high La/Nb ratios, a feature not inconsistent with the notion that the plateau may consist of stretched continental lithosphere, near the ocean-continent divide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of rock clasts and of heavy minerals in upper Miocene coarse detrital units drilled along the East Sardinia passive-type continental margin (Sites 654, 653, 652, and 656) reveal that the stretched basement contains quite complex rock suites. Taking also into account previous sampling data, in moving from west to east across the margin, the nature of the basement changes drastically. To the west there are mostly Hercynian basement rocks with their cover, referable to the alpine foreland of the Corsica-Sardinia block. To the east, along the lower margin, where crustal thinning is quite severe, the basement contains rock suites referable to a pre-upper Tortonian orogenized zone with units constituting parts of the Alpine and Apenninic chains (presumably with thickened continental crust prior to stretching). Largest thinning and ocean forming occurred then, in a rather short time, mostly at the expense of unstable crust just thickened by orogenetic/tectogenetic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suites of basalts drilled during Legs 127 and 128 can be distinguished by their mineral assemblages and compositions of phenocrysts and groundmass phases. An upper suite of plagioclase phyric basaltic sills with a groundmass composed of plagioclase, augite, and magnetite was recovered from Site 794. The upper, evolved part of this suite is highly plagioclase phyric, including calcic plagioclases (~An90). The most primitive, lower part of this upper suite, in addition, contains olivine, but lacks calcic plagioclase. A lower suite at Site 794 is plagioclase and olivine phyric to aphyric basaltic sills and flows with a groundmass of plagioclase, augite, olivine (~Fo75-83), and magnetite. At Site 795, plagioclase and augite phyric basalts and andesites were recovered. The relatively low Ti and Cr contents of augite of these basalts suggest typical arc tholeiitic parental magmas. Two suites of basalt were recovered from Site 797, an upper suite of plagioclase and olivine phyric to aphyric olivine basalts, and a lower suite of evolved plagioclase phyric basaltic sills. The most evolved sills at both sites lack olivine as phenocryst and groundmass phases, while this phase is present in the relatively primitive sills. The olivine-bearing suites contain plagioclase with relatively low potassium content and augite with relatively high sodium content. An exception is the olivine-bearing sills of the upper suite at Site 794 that contains plagioclase with relatively high potassium content similar to the associated olivine-free sills. The olivine-free suites contain plagioclase with high potassium content and augite with low sodium content and have the most evolved compositions of any of the Japan Sea rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A morphologically complex igneous basement was penetrated at Leg 125 Site 786 beneath approximately 100 m of Eocene-Pleistocene sediments at 31°52.45 'N, 141°13.59'E in a 3082-m water depth. The site is located on the forearc basement high (FBH) of the Izu-Bonin (Ogasawara) Arc. In the broadest terms, the sequence in Hole 786B consists of a basal sheeted dike complex, heavily mineralized in places, with overlying pillow lavas giving way to a complex and repeated sequence of interlayered volcanic breccias and lava flows with some thin sedimentary intervals. The sequence has been further cut by dikes or sills, particularly of high-Ca and intermediate-Ca boninite, and is locally strongly sheared by faulting. The whole basement has been covered with middle Eocene-early Pleistocene sediments. A monomict breccia forms the shallowest portion of Hole 786B and a polymict breccia having Mn-oxide-rich clast coatings and matrix forms the deepest part of Hole 786A (-100-160 mbsf). The basement is tectonized in some places, and a mineralized stockwork is present in the deepest part of Hole 786B. A wide variety of rock types form this basement, ranging from mafic to silicic in character and including high-, intermediate-, and low-Ca boninites, intermediate- and low-Ca bronzite andesites, andesite, dacite, and rhyolite groups. Intragroup and intergroup relationships are complicated in detail, and several different upper mantle source(s) probably were involved. A significant role for orthopyroxene-clinopyroxene-plagioclase fractionation is indicated in the mafic-intermediate groups, and the most probable complementary cumulates should be noritic gabbros. Many overall similarities but some subtle differences are noted between the igneous basement at Site 786 and the subaerial outcrops of the FBH to the south in the type boninite locality of Chichijima. Both suites were derived by hydrous melting of a relatively shallow, refractory (harzburgitic) upper mantle source. These Bonin forearc basement rocks are similar in many respects to those of Eocene-Oligocene age now forming the forearc of the Marianas at Leg 60 Site 458 and on Guam. In sharp distinction, the geochemistry of the Eocene-Pleistocene ash sequences overlying the Bonin FBH must have been derived from a very different upper mantle source, implying considerable across-strike differences in sub-arc mantle composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On Leg 121 of the Ocean Drilling Program, we recovered basaltic rocks from a total of three basement sites in the southern, central, and northern regions of Ninetyeast Ridge. These new sites complement the previous four basement holes drilled during Legs 22 and 26 of the Deep Sea Drilling Project, and confirm the predominantly tholeiitic, light rare earth element-enriched character of the basalts that cap the ridge. The basalts show marked iron enrichment; ferrobasalts occur at Sites 214 and 216 and oceanic andesites at Site 253. All of the basalts recovered during Leg 121 are altered, and range from aphyric olivine tholeiites (Site 756), to strongly plagioclase-phyric basalts (Site 757). Basalts from Site 758, which were clearly erupted in a submarine environment (pillow basalts are present in the section), are sparsely to strongly plagioclase-phyric. The basalts recovered at any one hole are isotopically homogeneous (except for the basalts from Site 758, which show a range of Pb isotopes), and it is possible to relate the magmas at any one site by high-level fractionation processes. However, there are significant variations in isotope ratios and highly incompatible element ratios between sites, which suggest that the mantle source for the ridge basalts was compositionally variable. Such variation, in view of the large volume of magmatic products that form the ridge system, is not surprising. There is not, however, a systematic variation in basalt composition along the ridge. We agree with previous models that relate Ninetyeast Ridge to a mantle plume in the southern Indian Ocean. The tholeiitic, iron-enriched, and voluminous character of the ridge basalts is typical of oceanic islands associated with plumes on or near a mid-ocean ridge (e.g., Iceland, Galapagos Islands, and St. Paul/Amsterdam islands). The absence of recovered alkalic suites is inconsistent with an intraplate setting, such as the Hawaiian Islands or Kerguelen Island. Thus, the major element data, like the gravity data, strongly suggest that the ridge was erupted on or very close to an active spreading center. Isotopically, the most likely plume that created the excess magmatism on the Ridge is the Kerguelen-Heard plume system, but the Ninetyeast Ridge basalts do not represent a simple mixing of the Kerguelen plume and mid-ocean Ninetyeast Ridge basalt mantle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentrations of the platinum-group elements (PGE) Ir, Ru, Pt and Pd were determined in 11 abyssal peridotites from ODP Sites 895 and 920, as well in six ultramafic rocks from the Horoman peridotite body, Japan, which is generally thought to represent former asthenospheric mantle. Individual oceanic peridotites from ODP drill cores are characterized by variable absolute and relative PGE abundances, but the average PGE concentrations of both ODP suites are very similar. This indicates that the distribution of the noble metals in the mantle is characterized by small-scale heterogeneity and large-scale homogeneity. The mean Ru/Ir and Pt/Ir ratios of all ODP peridotites are within 15% and 3%, respectively, of CI-chondritic values. These results are consistent with models that advocate that a late veneer of chondritic material provided the present PGE budget of the silicate Earth. The data are not reconcilable with the addition of a significant amount of differentiated outer core material to the upper mantle. Furthermore, the results of petrogenetic model calculations indicate that the addition of sulfides derived from percolating magmas may be responsible for the variable and generally suprachondritic Pd/Ir ratios observed in abyssal peridotites. Ultramafic rocks from the Horoman peridotite have PGE signatures distinct from abyssal peridotites: Pt/Ir and Pd/Ir are correlated with lithophile element concentrations such that the most fertile lherzolites are characterized by non-primitive PGE ratios. This indicates that processes more complex than simple in-situ melt extraction are required to produce the geochemical systematics, if the Horoman peridotite formed from asthenospheric mantle with chondritic relative PGE abundances. In this case, the PGE results can be explained by melt depletion accompanied or followed by mixing of depleted residues with sulfides, with or without the addition of basaltic melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pliocene and Pleistocene volcanic glass fragments from Mariana Trough sediments at Sites 453 (16 samples) and 454 (4 samples), located near the western edge of the trough and just west of the spreading axis, respectively, have been analyzed for major elements with an electron microprobe. They derive from volcanic activity on the present Mariana active arc. The glasses from Site 453 are all tholeiitic with a wide range of SiO2 contents. Those less than 2 m.y. old have slightly lower TiO2 and higher K2O contents than the older ones. The glasses from Site 454 are all Pleistocene and resemble the younger glasses at Site 453. Major element compositions of the older basaltic glasses at Site 453 are similar to those of the Mariana Trough basalts drilled on Leg 60. Both older and younger suites of glasses differ from the composition of rocks exposed on the active arc, which are assumed to be younger than any of the samples studied (i.e., about 200,000 y.). A third suite is represented by the arc rocks exposed on the volcanic islands. These have a smaller range of SiO2 contents and contain more A12O3 but less K2O, TiO2, and FeO1 (total Fe as FeO) than the sediment glasses studied. Further, a plot of FeO1 against MgO for the arc rocks does not follow the island arc tholeiite trend of the trough sediment glasses. Using the major element compositions of the arc rocks and sediment glasses, we can recognize three phases of volcanic activity, as indicated. The first evidence of the oldest phase of activity occurs 5 Ma, about 4.5 m.y. after the trough started to form. The second commenced about 2 Ma, and the last, including present-day activity, began within the last 200,000 y. Initially the rocks had major element affinities with the tholeiitic Mariana Trough seafloor, but this influence declined as the trough widened.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Leg 124, off the Philippines, volcanic material was recovered in deep-sea sediments dating from the late Oligocene in the Celebes Sea Basin, and from the early Miocene in the Sulu Sea Basin. Chemical and petrological studies of fallout ash deposits are used to characterize volcanic pulses and to determine their possible origin. All of the glass and mineral compositions belong to medium-K and high-K calc-alkaline arc-related magmatic suites including high-Al basalts, pyroxene-hornblende andesites, dacites, and rhyolites. Late Oligocene and early Miocene products may have originated from the Sunda arc or from the Sabah-Zamboanga old Sulu arc. Late early Miocene Sulu Sea tuffs originated from the Cagayan arc, whereas early late Miocene fallout ashes are attributed to the Sulu arc. A complex magmatic production is distinguished in the Plio-Quaternary with three sequences of basic to acidic lava suites. Early Pliocene strata registered an important activity in both Celebes Sea and Sulu Sea areas, from the newly born Sangihe arc (low-alumina andesite series) and from the Sulu, Zamboanga, and Negros arcs (high-alumina basalt series and high-K andesite series). In the late Pliocene and the early Pleistocene, renewal of activity affects the Sangihe-Cotobato arc as well as the Sulu and Negros arcs (same magmatic distinctions). The last volcanic pulse took place in the late Pleistocene with revival of all the present arc systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Izu-Bonin forearc basement volcanic rocks recovered from Holes 792E and 793B show the same phenocrystic assemblage (i.e., plagioclase, two pyroxenes, and Fe-Ti oxides ±olivine), but they differ in the crystallization sequence and their phenocryst chemistry. All the igneous rocks have suffered low-grade hydrothermal alteration caused by interaction with seawater. As a result, only clinopyroxenes, plagioclases, and oxides have preserved their primary igneous compositions. The Neogene olivine-clinopyroxene diabasic intrusion (Unit II) recovered from Hole 793B differs from the basement basaltic andesites because it lacks Cr-spinels and contains abundant titanomagnetites (Usp38.5-46.4) and uncommon FeO-rich (FeO = 29%) spinels. It displays petrological and geochemical similarities to the Izu Arc volcanoes and, thus, can be considered as related to Izu-Bonin Arc magmatic activity. The titanomagnetites (Usp28.5-33) in the calc-alkaline andesitic fragments of the Oligocene volcaniclastic breccia in Hole 793B (Unit VI) represent an early crystallization phase. The Plagioclase phenocrysts enclosed in these rocks show oscillatory zoning and are less Ca-rich (An78.6-67.8) than the plagioclase phenocrysts of the diabase sill and the basement basaltic andesites. Their clinopyroxenes are Fe-rich augites (Fs ? 19.4; FeO = 12%) and thus, differ significantly from the clinopyroxenes of the Hole 793B arc-tholeiitic igneous rocks. The 30-32 Ma porphyritic, two-pyroxene andesites recovered from Hole 792E are very similar to the andesitic clasts of the Neogene breccia recovered in Hole 793B (Unit VI). Both rocks have the same crystallization sequence, and similar chemistry of the Fe-Ti oxides, clinopyroxenes, and plagioclases: that is, Ti-rich (Usp25.5-30.4) magnetites, Fe-rich augites, and intensely oscillatory zoned plagioclases with bytownitic cores (An86-63) and labradorite rims (An73-68). They display a calc-alkaline differentiation trend (Taylor et al., this volume). So, the basement highly porphyritic andesites recovered at Hole 792E, and the Hole 793B andesitic clasts of Unit VI show the same petrological and geochemical characteristics, which are that of calc-alkaline suites. These Oligocene volcanic rocks represent likely the remnants of the Izu-Bonin normal arc magmatic activity, before the forearc rifting and extension. The crystallization sequence in the basaltic andesites recovered from Hole 793B is olivine-orthopyroxene-clinopyroxene-plagioclase-Fe-Ti oxides, indicating a tholeiitic differentiation trend for these volcanic rocks. Type i is an olivine-and Cr-spinel bearing basaltic andesite whereas Type ii is a porphyritic pyroxene-rich basaltic andesite. The porphyritic plagioclase-rich basaltic andesite (Type iii) is similar, in most respects, to Type ii lavas but contains plagioclase phenocrysts. The last, and least common lava is an aphyric to sparsely phyric andesite (Type iv). Cr-spinels, included either in the olivine pseudomorphs of Type i lavas or in the groundmass of Type ii lavas, are Cr-rich and Mg-rich. In contrast, Cr-spinels included in clinopyroxenes and orthopyroxenes (Types i and ii lavas) show lower Cr* and Mg* ratios and higher aluminium contents. Orthopyroxenes from all rock types are Mg-rich enstatites. Clinopyroxenes display endiopsidic to augitic compositions and are TiO2 and Al2O3 depleted. All the crystals exhibit strong zoning patterns, usually normal, although, reverse zoning patterns are not uncommon. The plagioclases show compositions within the range of An90-64. The Fe-Ti oxides of the groundmass are TiO2-poor (Usp16-17). The Hole 793B basaltic andesites show, like the Site 458 bronzites from the Mariana forearc, intermediate features between arc tholeiites and boninites: (1) Cr-spinel in olivine, (2) presence of Mg-rich bronzite, Ca-Mg-rich clinopyroxenes, and Ca-plagioclase phenocrysts, and (3) transitional trace element depletion and epsioln-Nd ratios between arc tholeiites and boninites. Thus, the forearc magmatism of the Izu-Bonin and Mariana arcs, linked to rifting and extension, is represented by a depleted tholeiitic suite that displays boninitic affinities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace element (including REE) geochemistry of basalts and chilled basaltic glasses from the MAR axial zone in the vicinity of the Sierra Leone FZ (5-7°10'N) has been studied. Associations of basalts of various compositions with particular ocean-floor geological structural features have been analyzed as well. Three basaltic varieties have been discriminated. Almost ubiquitous are high-Mg basalts (Variety 1) that are derivatives of N-MORB tholeiitic melts and that are produced in the axial zone of spreading. Variety 2 is alkaline basalts widespread on the southwestern flank of the MAR crest zone in the Sierra Leone region, likely generated through deep mantle melting under plume impact. Variety 3 is basalts derivative from T- and P-MORB-like tholeiitic melts and originating through addition of deeper mantle material to depleted upper mantle melts. Magma generation parameters, as calculated from chilled glass compositions, are different for depleted tholeiites (44-55 km, 1320-1370°C) and enriched tholeiites (45-78 km, 1330-1450°C). Mantle plume impact is shown to affect not only tholeiitic basalt compositions but also magma generation conditions in the axial spreading zone, resulting in higher Ti and Na concentrations in melts parental to rift-related basalts occurring near the plume. T- and P-MORBs are also developed near areas where mantle plumes are localized. High-Mg basalts are shown to come in several types with distinctive Ti and Na contents. Nearly every single MAR segment (bounded by sinistral strike slips and the Bogdanov Fracture Zone) is featured by its own basalt type suggesting that it has formed above an asthenospheric diapir with its unique magma generation conditions. These conditions are time variable. Likely causes of temporal and spatial instability of the mantle upwelling beneath this portion of the MAR are singular tectonic processes and plume activity. In sulfide-bearing rift morphostructures (so-called "Ore area'' and the Markov Basin), basalts make up highly evolved suites generated through olivine and plagioclase fractionation, which is suggestive of relatively long-lived magma chambers beneath the sulfide-bearing rift morphostructures. Functioning of these chambers is a combined effect of singular geodynamic regime and plume activity. In these chambers melts undergo deep differentiation leading to progressively increasing concentration of sulfide phase, eventually to be supplied to the hydrothermal plumbing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Miocene sediments from ODP Sites 652 and 654, drilled on the Sardinian margin in the Western Tyrrhenian Sea, are investigated through mineralogical, micromorphological, geochemical, and microgeochemical analyses. Clay associations appear to be little controlled by conditions of deposition, and largely depend on pre- and post-depositional conditions. The sedimentary series from Central Mediterranean gives very different geodynamic information, according to the sector considered. While relatively stable conditions, like those encountered in Caltanissetta Basin, Sicily, favor the mineralogical expression of warm-temperate and subarid Messinian climate, the Eastern Sardinia margin (Site 654) clay suites mainly reflect the transition from tectonically active to relaxed conditions. The series deposited at the foot of the same margin above a thinner crust (Site 652) experienced the effects of burial diagenesis, enhanced by strong geothermal gradient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower Cretaceous sediments were sampled for magnetostratigraphy at three sites. ODP Site 765 and DSDP Site 261, in the Argo Abyssal Plain, consist primarily of brownish-red to gray claystone having hematite and magnetite carriers of characteristic magnetization. ODP Site 766, in the Gascoyne Abyssal Plain, consists mainly of dark greenish-gray volcaniclastic turbidites with magnetite as the carrier of characteristic magnetization. Progressive thermal demagnetization (Sites 765 and 261) or alternating field demagnetization (Site 766) yielded well-defined polarity zones and a set of reliable paleolatitudes. Magnetic polarity chrons were assigned to polarity zones using biostratigraphic correlations. Late Aptian chron M"-1"r, a brief reversed-polarity chron younger than MOr, is a narrow, 40-cm feature delimited in Hole 765C. Early Aptian reversed-polarity chron MOr is also present in Hole 765C. Polarity chrons Mir through M3r were observed in the Barremian of all three sites. Valanginian and Hauterivian polarity chrons can be tentatively assigned to polarity zones only in Hole 766A. The paleolatitude of this region remained at 35° to 37°S from the Berriasian through the Aptian. During this interval, there was approximately 16° of clockwise rotation, with the oriented sample suites of Site 765 displaying a Berriasian declination of 307° to an Aptian declination of 323°. These results are consistent with the interpolated Early Cretaceous apparent polar wander for Australia, but indicate that this region was approximately 5? farther north than predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platinum-group elements (PGE), rhenium and osmium isotope data are reported for basalts from Deep Sea Drilling Project cores in the Philippine Sea Plate (PSP). Lithophile trace element and isotopic characteristics indicate a range of source components including DMM, EMII and subduction-enriched mantle. MORB-like basalts possess smooth, inclined chondrite-normalised PGE patterns with high palladium-PGE/iridium-PGE ratios, consistent with previously published data for MORB, and with the inferred compatibility of PGE. In contrast, while basalts with EMII-type lithophile element chemistry possess high Pt/Ir ratios, many have much lower Pd/Ir and unusually high Ru/Ir of >10. Similarly, back-arc samples from the Shikoku and Parece-Vela basins have very high Ru/Ir ratios (>30) and Pd/Ir as low as 1.1. Such extreme Pd/Ir and Ru/Ir ratios have not been previously reported in mafic volcanic suites and cannot be easily explained by variable degrees of melting, fractional crystallisation or by a shallow-level process such as alteration or degassing. The data appear most consistent with sampling of at least two mantle components with distinct PGE compositions. Peridotites with the required PGE characteristics (i.e. low Pd, but relatively high Ru and Re) have not been documented in oceanic mantle, but have been found in sub-continental mantle lithosphere and are the result of considerable melt depletion and selective metasomatic enrichment (mainly Re). The long-term presence of subduction zones surrounding the Philippine Sea Plate makes this a prime location for metasomatic enrichment of mantle, either through fluid enrichment or infiltration by small melt fractions. The Re-Os isotope data are difficult to interpret with confidence due to low Os concentrations in most samples and the uncertainty in sample age. Data for Site 444A (Shikoku Basin) give an age of 17.7+/-1.3 Ma (MSWD = 14), consistent with the proposed age of basement at the site and thus provides the first robust radiometric age for these samples. The initial 187Os/188Os of 0.1298+/-0.0069 is consistent with global MORB, and precludes significant metasomatic enrichment of Os by radiogenic slab fluids. Re-Os data for Sites 446A (two suites, Daito Basin) and 450 (Parece-Vela Basin) indicate ages of 73, 68 and 43 Ma, which are respectively, 30, 17 and >12 Ma older than previously proposed ages. The alkalic and tholeiitic suites from Site 446A define regression lines with different 187Os/188Osinitial (0.170+/-0.033 and 0.112+/-0.024, respectively) which could perhaps be explained by preferential sampling of interstitial, metasomatic sulphides (with higher time-integrated Re/Os ratios) by smaller percentage alkalic melts. One sample, with lithophile elements indistinguishable from MORB, is Os-rich (146 pg/g) and has an initial 187Os/188Os of 0.1594, which is at the upper limit of the accepted OIB range. Given the Os-rich nature of this sample and the lack of evidence for subduction or recycled crust inputs, this osmium isotope ratio likely reflects heterogeneity in the DMM. The dataset as a whole is a striking indication of the possible PGE and Os isotope variability within a region of mantle that has experienced a complex tectonic history.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents electron microprobe data for dunite xenoliths from a lamprophyre dyke located on the island of Qeqertaa, West Greenland. The minimum age of this dyke is Palaeoproterozoic and it experienced amphibolite facies metamorphism and deformation during that era. The samples consist of nearly 200 xenoliths with a size range of 0.5-8 cm. These dunite xenoliths have olivine Mg#, that range from 80.3 to 94.6 (n = 579) with a mean of 92.6. Orthopyroxene is found in three xenoliths and garnet in five others. The latter suggests the depth of the Qeqertaa xenolith suite to be near the diamond stability-field, which is substantiated by the finding of diamonds in bulk samples of the Qeqertaa dyke. This further indicates the presence of a lithospheric mantle domain dominated by high-Mg# dunite to this depth in Palaeoproterozoic time. Cr-rich spinel, in the 0.1-0.2 mm size range, is found within and between olivine grains in individual xenoliths. These Cr-spinels yield Fe-Mg exchange temperatures of 400-600°C. However, the presence of intermediate spinel compositions spanning the lower temperature solvus suggests that equilibration temperatures were >550°C. Fe3+#, expressed as 100xFe3+/(Fe3++Al+Cr)), is shown to be a useful parameter in order to screen for altered spinel (Fe3+#>10) with disturbed Mg# and Cr#. The screened spinel data (Fe3+#<10) show a distinctly different trend in terms of spinel Cr# versus Mg#, compared to unmetamorphosed xenoliths in Tertiary lavas and dikes from Ubekendt Ejland and Wiedemann Fjord, respectively, also located within the North Atlantic craton. This difference likely reflects amphibolite facies metamorphic resetting of the Qeqertaa xenolith suite by Fe-Mg exchange. Given the similarity of the Qeqertaa xenolith suite with the Ubekendt and Wiedemann suites, in terms of their olivine Mg# and spinel Cr# distribution, high-Mg# dunite is likely to be an important component of the subcontinental lithospheric mantle beneath the North Atlantic craton and appears to have spanned a vertical distance of at least 150 km in this region, even during the Palaeoproterozoic.