931 resultados para Storage Contention
Resumo:
Numerical simulations are performed to study the stability characteristics of a molten salt thermocline storage unit. Perturbations are introduced into a stable flow field in such a way as to make the top-fluid heavier than the fluid at the bottom, thereby causing a possible instability in the system. The evolution pattern of the various disturbances are examined in detail. Disturbances applied for short duration get decayed before they could reach the thermocline, whereas medium and long duration disturbances evolve into a ``falling spike'' or ``stalactite-like'' structure and destabilize the thermocline. Rayleigh Taylor instability is observed inside the storage tank. The effect of the duration, velocity and temperature of the disturbance on thermocline thickness and penetration length are studied. A quadratic time dependence of penetration length was observed. New perspectives on thermocline breakdown phenomena are obtained from the numerical flow field. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.
Resumo:
Carbon thin films are very important as protective coatings for a wide range of applications such as magnetic storage devices. The key parameter of interest is the sp3 fraction, since it controls the mechanical properties of the film. Visible Raman spectroscopy is a very popular technique to determine the carbon bonding. However, the visible Raman spectra mainly depend on the configuration and clustering of the sp2 sites. This can result in the Raman spectra of different samples looking similar albeit having a different structure. Thus, visible Raman alone cannot be used to derive the sp3 content. Here we monitor the carbon bonding by using a combined study of Raman spectra taken at two wavelengths (514 and 244 nm). We show how the G peak dispersion is a very useful parameter to investigate the carbon samples and we endorse it as a production-line characterisation tool. The dispersion is proportional to the degree of disorder, thus making it possible to distinguish between graphitic and diamond-like carbon. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Reconfigurable shutter-based free-space optical switching technologies using fiber ribbon and multiple wavelengths per fiber for Storage Area Networks (SANs) application are presented and demonstrated. ©2009 SPIE-OSA-IEEE.
Resumo:
Reconfigurable shutter-based free-space optical switching technologies using fiber ribbon and multiple wavelengths per fiber for Storage Area Networks (SANs) application are presented and demonstrated. ©2009 Optical Society of America.
Resumo:
Abstract: When Qohelet declares “there is nothing new under the sun,” his own words are no exception. It has been known for a century now that not all of Qohelet’s material is original to his own genius, and the idea that Qohelet is directly dependent on a literary source(s) is standard fare. The hallmark example continues to be Siduri the alewife’s advice to Gilgamesh which displays remarkable correspondence with Ecclesiastes 9: 7-9. However, what may have been construed as an instance of clear literary dependency a century ago cannot be maintained in light of the data that continues to emerge from the ancient Near East. New sources have risen that contend with the Gilgamesh Epic, and there has yet to emerge a definitive victor. This paper calls into question the very idea that Qohelet was directly dependent on a literary precursor and joins with a few select voices both past and present in suggesting an alternate interpretation of the data.
Resumo:
In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region. It is pointed out that the static force-free field is insufficient for a discussion of storage processes, and also the pure unsteady plasma rotation is not a perfect approach. In order to analyze the energy storage, we must consider the addition of poloidal plasma motion. The paper shows that because the unsteady poloidal flow is added and coupling occurs between the magnetic field and both the toroidal and the poloidal plasma flows, an unsteady process is maintained which changes the force-free factor with time. Hence, the energy in the lower levels can be transferred to the upper levels, and a considerable energy can be stored in the active region. Finally, another storage process is given which is due to the pure poloidal flow. The article shows that even if there is no twisted magnetic line of force, the energy in the lower levels may still be transferred to the upper levels and stored there.
Resumo:
In this paper, a complete set of MHD equations have been solved by numerical calculations in an attempt to study the dynamical evolutionary processes of the initial equilibrium configuration and to discuss the energy storage mechanism of the solar atmosphere by shearing the magnetic field. The initial equilibrium configuration with an arch bipolar potential field obtained from the numerical solution is similar to the configuration in the vicinity of typical solar flare before its eruption. From the magnetic induction equation in the set of MHD equations and dealing with the non-linear coupling effects between the flow field and magnetic field, the quantitative relationship has been derived for their dynamical evolution. Results show that plasma shear motion at the bottom of the solar atmosphere causes the magnetic field to shear; meanwhile the magnetic field energy is stored in local regions. With the increase of time the local magnetic energy increases and it may reach an order of 4×10^25 J during a day. Thus the local storage of magnetic energy is large enough to trigger a big solar flare and can be considered as the energy source of solar flares. The energy storage mechanism by shearing the magnetic field can well explain the slow changes in solar active regions.