961 resultados para Steady state solutions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used magnetoencephalography (MEG) to examine the dynamic patterns of neural activity underlying the auditory steady-state response. We examined the continuous time-series of responses to a 32-Hz amplitude modulation. Fluctuations in the amplitude of the evoked response were found to be mediated by non-linear interactions with oscillatory processes both at the same source, in the alpha and beta frequency bands, and in the opposite hemisphere. © 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a source or sink of reactive power, compensators can be made from a voltage sourced inverter circuit with the a.c. terminals of the inverter connected to the system through an inductive link and with a capacitor connected across the d.c. terminals. Theoretical calculations on linearised models of the compensators have shown that the parameters characterising the performance are the reduced firing angle and the resonance ratio. The resonance ratio is the ratio of the natural frequency of oscillation of the energy storage components in the circuit to the system frequency. The reduced firing angle of the inverter divided by the damping coefficient, β, where β is half the R to X ratio of the link between the inverter and the system. The theoretical results have been verified by computer simulation and experiment. There is a narrow range of values for the resonance ratio below which there is no appreciable improvement in performance, despite an increase in the cost of the energy storage components, and above which the performance of the equipment is poor with the current being dominated by harmonics. The harmonic performance of the equipment is improved by using multiple inverters and phase shifting transformers to increase the pulse number. The optimum value of the resonance ratio increases pulse number, indicating a reduction in the energy storage components needed at high pulse numbers. The reactive power output from the compensator varies linearly with the reduced firing angle while the losses vary as the square of it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several methods of providing series compensation for transmission lines using power electronic switches. Four methods of series compensation have been examined in this thesis, the thyristor controlled series capacitor, a voltage sourced inverter series compensator using a capacitor as the series element, a current sourced inverter series compensator and a voltage sourced inverter using an inductor as the series element. All the compensators examined will provide a continuously variable series voltage which is controlled by the switching of the electronic switches. Two of the circuits will offer both capacitive and inductive compensation, the thyristor controlled series capacitor and the current sourced inverter series compensator. The other two will produce either capacitive or inductive series compensation. The thyristor controlled series capacitor offers the widest range of series compensation. However, there is a band of unavailable compensation between 0 and 1 pu capacitive compensation. Compared to the other compensators examined the harmonic content of the compensating voltage is quite high. An algebraic analysis showed that there is more than one state the thyristor controlled series capacitor can operate in. This state has the undesirable effect of introducing large losses. The voltage sourced inverter series compensator using a capacitor as the series element will provide only capacitive compensation. It uses two capacitors which increase the cost of the compensator significantly above the other three. This circuit has the advantage of very low harmonic distortion. The current sourced inverter series compensator will provide both capacitive and inductive series compensation. The harmonic content of the compensating voltage is second only to the voltage sourced inverter series compensator using a capacitor as the series element. The voltage sourced inverter series compensator using an inductor as the series element will only provide inductive compensation, and it is the least expensive compensator examined. Unfortunately, the harmonics introduced by this circuit are considerable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRIB2 is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Here, we studied murine haematopoiesis after Trib2 ablation under steady state and proliferative stress conditions, including genotoxic and oncogenic stress. At the steady state, we found that TRIB2 loss did not adversely affect peripheral blood cell counts and populations. No detectable significant differences were found in the populations of haematopoietic stem and progenitor cells. However, Trib2-/- mice had significantly higher thymic cellularity due to the increased proliferation of Trib2-/- developing thymocytes which give rise to increased number of mature thymic subsets. During stressed haematopoiesis, Trib2-/- developing thymocytes demonstrate hypersensitivity to 5-fluorouracil-induced cell death. Nevertheless, Trib2-/- mice exhibit accelerated thymopoietic recovery post 5-fluorouracil treatment due to increased cell division kinetics of developing thymocytes. In an experimental murine T-cell acute lymphoblastic leukaemia (T-ALL) model, Trib2-/- mice had reduced latency in vivo which associated with aggressive T-ALL phenotypes and impaired activation of mitogen-activated protein kinase. Gene set enrichment analysis showed that TRIB2 expression is elevated in immature subtype of human T-ALL enriched with mitogen-activated protein kinase signalling. However, TRIB2 expression is suppressed in mature subtype of human T-ALL. Thus, TRIB2 emerges as a novel regulator of thymocyte cellular proliferation, important for the thymopoietic response to genotoxic and oncogenic stress, and possessing tumour suppressor function. In Drosophila, Tribbles promotes degradation of String which is an orthologue of mammalian CDC25 phosphatases in order to arrest cell cycle during embryonic development. Here, we showed that the role of Tribbles-induced degradation of String is evolutionarily conserved in TRIB2. We found that TRIB2 interacts with CDC25B/C but not CDC25A isoform. Overexpression of TRIB2 promotes polyubiquitination and degradation of CDC25C. Hence, future works are warranted to examine TRIB2-CDC25C interaction in the context of developing thymocytes and in T-cell acute lymphoblastic leukaemia, the malignant counterpart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana However, forced acidification through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation, and expansin action may be more flexible in roots than in shoots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.