964 resultados para Starch contents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 133 samples (53 fermented unprocessed, 19 fermented processed. 62 urea-treated processed) of whole crop wheat (WCW) and 16 samples (five fermented unprocessed, six fermented processed, five urea-treated processed) of whole crop barley (WCB) were collected from commercial farms over two consecutive years (2003/2004 and 2004/2005). Disruption of the maize grains to increase starch availability was achieved at the point of harvest by processors fitted to the forage harvesters. All samples were subjected to laboratory analysis whilst 50 of the samples (24 front Year 1, 26 front Year 2 all WCW except four WCB in Year 2) were subjected to in vivo digestibility and energy value measurements using mature wether sheep. Urea-treated WCW had higher (P<0.05) pH, and dry matter (DM) and crude protein contents and lower concentrations of fermentation products than fermented WCW. Starch was generally lower in fermented, unprocessed WCW and no effect of crop maturity at harvest (as indicated by DM content) on starch concentrations was seen. Urea-treated WCW had higher (P<0.05) in vivo digestible organic matter contents in the DM (DOMD) in Year 1 although this was not recorded in Year 2. There was a close relationship between the digestibility values of organic matter and gross energy thus aiding the use of DOMD to predict metabolisable energy (ME) content. A wide range of ME values was observed (WCW. 8.7-11.8 MJ/kg DM; WCB 7.9-11.2 MJ/kg DM) with the overall ME/DOMD ratio (ME = 0.0156 DOMD) in line With Studies in other forages. There was no evidence that a separate ME/DOMD relationship was needed for WCB which is helpful for practical application. This ratio and other parameters were affected by year of harvest (P<0.05) highlighting the influence of environmental and Other undefined factors. The variability in the composition and nutritive value of WCW and WCB highlights the need for reliable and accurate evaluation methods to be available to assess the Value of these forages before they are included in diets for dairy cows. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 degreesC, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. C-w was lower). The low-moisture-content limit (m(c)) to this relation also differed, being lower in the mutant near-isogenic lines (5.4-5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semilogarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity. was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current gas-based in vitro evaluation systems are extremely powerful research techniques. However they have the potential to generate a great deal more than simple fermentation dynamics. Details from four experiments are presented in which adaptation, and novel application, of an in vitro system allowed widely differing objectives to be examined. In the first two studies, complement methodologies were utilised. In such assays, an activity or outcome is inferred through the occurrence of a secondary event rather than by direct observation. Using an N-deficient incubation medium, the increase in starch fermentation, when supplemented with individual amino acids (i.e., known level of N) relative to that of urea (i.e., known quantity and N availability), provided an estimate of their microbial utilisation. Due to the low level of response observed with some arnino acids (notably methionine and lysine), it was concluded, that they may not need to be offered in a rumen-inert form to escape rumen microbial degradation. In another experiment, the extent to which degradation of plant cell wall components was inhibited by lipid supplementation was evaluated using fermentation gas release profiles of washed hay. The different responses due to lipid source and level of inclusion suggested that the degree of rumen protection required to ameliorate this depression was supplement dependent. That in vitro inocula differ in their microbial composition is of little interest per se, as long as the outcome is the same (i.e., that similar substrates are degraded at comparable rates and end-product release is equivalent). However where a microbial population is deficient in a particular activity, increasing the level of inoculation will have no benefit. Estimates of hydrolytic activity were obtained by examining fermentation kinetics of specific substrates. A number of studies identified a fundamental difference between rumen fluid and faecal inocula, with the latter having a lower fibrolytic activity, which could not be completely attributed to microbial numbers. The majority of forage maize is offered as an ensiled feed, however most of the information on which decisions such as choice of variety, crop management and harvesting date are made is based on fresh crop measurements. As such, an attempt was made to estimate ensiled maize quality from an in vitro analysis of the fresh crop. Fermentation profiles and chemical analysis confirmed changes in crop composition over the growing season, and loss of labile carbohydrates during ensiling. In addition, examination of degradation residues allowed metabolizable energy (ME) contents to be estimated. Due to difficulties associated with starch analysis, the observation that this parameter could be predicted by difference (together with an assumed degradability), allowed an estimate of ensiled maize ME to be developed from fresh material. In addition, the contribution of the main carbohydrates towards ME showed the importance of delaying harvest until maximum starch content has been achieved. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7 h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milk solids yield in modern dairy cows has increased linearly over the last 50 years, stressing the need for maximal dietary energy intake to allow genetic potential for milk energy yield to be realized with minimal negative effects on health and reproduction. Feeding supplemental starch is a common approach for increasing the energy density of the ration and supplying carbon for meeting the substantial glucose requirement of the higher yielding cow. In this regard, it is a long held belief that feeding starch in forms that increase digestion in the small intestine and glucose absorption will benefit the cow in terms of energetic efficiency and production response, but data supporting this dogma are equivocal. This review will consider the impact of supplemental starch and site of starch digestion on metabolic and production responses of lactating dairy cows, including effects on feed intake, milk yield and composition, nutrient partitioning, the capacity of the small intestine for starch digestion, and nutrient absorption and metabolism by the splanchnic tissues (the portal-drained viscera and liver). Whilst there appears to be considerable capacity for starch digestion and glucose absorption in the lactating dairy cow, numerous strategic studies implementing postruminal starch or glucose infusions have observed increases in milk yield, but decreased milk fat concentration such that there is little effect on milk energy yield, even in early lactation. Measurements of energy balance confirm that the majority of the supplemental energy arising from postruminal starch digestion is used with high efficiency to support body adipose and protein retention, even in early lactation. These responses may be mediated by changes in insulin status, and be beneficial to the cow in terms of reproductive success and well-being. However, shifting starch digestion from the rumen impacts the nitrogen economy of the cow as well by shifting the microbial protein gained from starch digestion from potentially absorbable protein to endogenous faecal loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 °C, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. CW was lower). The low-moisture-content limit (mc) to this relation also differed, being lower in the mutant near-isogenic lines (5.4–5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semi-logarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prebiotics are nondigestible food ingredients that encourage proliferation of selected groups of the colonic microflora, thereby altering the composition toward a more beneficial community. In the present study, the prebiotic potential of a novel galactooligosaccharide (GOS) mixture, produced by the activity of galactosyltransferases from Bifidobacterium bifidum 41171 on lactose, was assessed in vitro and in a parallel continuous randomized pig trial. In situ fluorescent hybridization with 16S rRNA-targeted probes was used to investigate changes in total bacteria, bifidobacteria, lactobacilli, bacteroides, and Clostridium histolyticum group in response to supplementing the novel GOS mixture. In a 3-stage continuous culture system, the bifidobacterial numbers for the first 2 vessels, which represented the proximal and traverse colon, increased (P < 0.05) after the addition of the oligosaccharide mixture. In addition, the oligosaccharide mixture strongly inhibited the attachment of enterohepatic Escherichia coli (P < 0.01) and Salmonella enterica serotype Typhimurium (P < 0.01) to HT29 cells. Addition of the novel mixture at 4% (wt:wt) to a commercial diet increased the density of bificlobacteria (P < 0.001) and the acetate concentration (P < 0.001), and decreased the pH (P < 0.001) compared with the control diet and the control diet supplemented with inulin, suggesting a great prebiotic potential for the novel oligosaccharide mixture. J. Nutr. 135: 1726-1731, 2005.