908 resultados para Square-wave voltammetry
Resumo:
Question: Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and de- generation. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM) [1]. Further studies showed that growth factors from the transforming growth factor (TGF) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC) [2]. Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods: Bovine IVD cells were isolated by pronase/collagenase II overnight digestion. After monolayer expansion up to passage 3, cells were transfected with the plasmid pGDF6 (RG211366, Origene, SF) or with green fluorescence protein (GFP) control using the NeonÒ transfection system (Invitrogen, Basel), both equipped with a Cy- tomegalovirus (CMV) promotor to induce over-expression. We tested a range of yet unpublished parameters for each of the primary disc cells to optimize efficiency. To test a non-viral gene therapy applied directly to 3D whole organ culture, bovine IVDs were harvested from fresh tails obtained from the abattoir within 5 h post-mortem [3]. Discs were then pre-incubated for 24 h in high glucose Dulbecco’s Modified Eagle Medium and 5 % fetal calf serum. Each disc was transfected by injection of 5 lg of plasmid GDF6 (Origene, RG211366) into the center by 25G needle and using Hamilton sy- ringe. Electroporation was performed using 2-needle array electrode or tweezertrodes; 8 pulses at 200mv/cm with an interval of 10 ms were applied using ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) (Fig. 1). After transfection discs were cultured for 72 h to allow expression of GFP or GDF6. Discs were then fixed, cryosectioned and analysed by immunofluorescence against GDF6. Results: We successfully transfected bovine NP and AF cells in monolayer culture with the two plasmids using a 1,400 V, 20 ms and 2 pulses with a *25 % efficiency using 0.15 M cells and 3 lg DNA (Fig. 1). Organ IVD culture transfection revealed GFP6 positive staining in the centre of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GFP posi- tive cells. Conclusions: We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgments: This study was supported by the Lindenhof Foundation ‘‘Forschung und Lehre’’ (Project no. 13-02-F). References 1. Roughly PJ (2004) Spine (Phila) 29:2691–2699 2. 3. Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014) Arthritis Res Ther 16:R67 Chan SC, Gantenbein-Ritter B (2012) J Vis Exp 60(60):e3490
Resumo:
A numerical description is given for the pulsating emission of droplets from an electrified meniscus of an inviscid liquid of infinite electrical conductivity which is injected at a constant flow rate into a region of uniform, continuous or time periodic, electric field. Under a continuous field, the meniscus attains a periodic regime in which bursts of tiny droplets are emitted from its tip. At low electric fields this regime consists of sequences of emission bursts interspersed with sequences of meniscus oscillations without droplet emission, while at higher fields the bursts occur periodically. These results are in qualitative agreement with experimental results in the literature. Under a time periodic electric field with square waveform, the electric stress that acts on the surface of the liquid while the field is on may generate a tip that emits tiny droplets or may accelerate part of the meniscus and lead to a second emission mode in which a few large droplets are emitted after the electric field is turned off. Conditions under which each emission mode or a combination of the two are realized are discussed for low frequency oscillatory fields. A simplified model is proposed for high electric field frequencies, of the order of the capillary frequency of the meniscus. This model allows computing the average emission rate as a function of the amplitude, duration and bias of the electric field square wave, and shows that droplet emission fails to follow the applied field above a certain frequency
Resumo:
Interactions between stimulus-induced oscillations (35-80 Hz) and stimulus-locked nonoscillatory responses were investigated in the visual cortex areas 17 and 18 of anaesthetized cats. A single square-wave luminance grating was used as a visual stimulus during simultaneous recordings from up to seven electrodes. The stimulus movement consisted of a superposition of a smooth movement with a sequence of dynamically changing accelerations. Responses of local groups of neurons at each electrode were studied on the basis of multiple unit activity and local slow field potentials (13-120 Hz). Oscillatory and stimulus-locked components were extracted from multiple unit activity and local slow field potentials and quantified by a combination of temporal and spectral correlation methods. We found fast stimulus-locked components primarily evoked by sudden stimulus accelerations, whereas oscillatory components (35-80 Hz) were induced during slow smooth movements. Oscillations were gradually reduced in amplitude and finally fully suppressed with increasing amplitudes of fast stimulus-locked components. It is argued that suppression of oscillations is necessary to prevent confusion during sequential processing of stationary and fast changing retinal images.
Resumo:
Background. Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and degeneration. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM).1 Further studies showed that growth factors from transforming growth factor β (TGFβ) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC).2 Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods. Bovine nucleus pulposus (bNPC) and annulus fibrosus cells (bAFC) were harvested from bovine coccygeal IVD. Primary cells were then electroporized with plasmid GDF6 (Origene, vector RG211366) by optimizing parameters using the Neon Transfection system (Life Technologies, Basel). After transfection, cells were cultured in 2D monolayer or 3D alginate beads for 7, 14 or 21 days. Transfection efficiency of pGDF6 was analyzed by immunohistochemistry and fluorescent microscopy. Cell phenotype was quantified by real-time RT-PCR. To test a non-viral gene therapy applied directly to 3D whole organ culture, coccygeal bovine IVDs were harvested as previously described. Bovine IVDs were transfected by injection of plasmid GDF6 into the center. Electroporation was performed with ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) using 2-needle array electrode or tweezertrodes. 72 h after tranfection discs were fixed and cryosectioned and analyzed by immunofluorescence against GDF6. Results. RT-PCR and immunohistochemistry confirmed up-regulation of GFP and GDF6 in the primary bNPC/bAFC culture. The GFP-tagged GDF6 protein, however, was not visible, possibly due to failure of dimer formation as a result of fusion structure. Organ IVD culture transfection revealed GDF6 positive staining in the center of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GDF6 positive cells. Conclusion. Non-viral transfection is an appealing approach for gene therapy as it fulfills the translational safety aspects of transiency and lacks the toxic effects of viral transduction. We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgements. This project was funded by the Lindenhof Foundation (Funds “Research & Teaching”) Project no. 13-02-F. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern. References. Roughly PJ (2004): Spine (Phila), 29:2691-2699 Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014), Arthritis Research & Therapy, 16:R67
Resumo:
Emmetropization is dependent on visual feedback and presumably some measure of the optical and image quality of the eye. We investigated the effect of simple alterations to image contrast on eye growth and refractive development. A 1.6 cyc/deg square-wave-grating target was located at the end of a 3.3 cm cone,, imaged by a +30 D lens and applied monocularly to the eyes of 8-day-old chicks. Eleven different contrast targets were tested: 95, 67, 47.5, 33.5, 24, 17, 12, 8.5, 4.2, 2.1, and 0%. Refractive error (RE), vitreous chamber depth (VC) and axial length (AL) varied with the contrast of the image (RE diff. F-10.86 = 12.420, p < 0.0005; VC diff. F-10.86 = 8.756, p < 0.0005; AL diff. F-10.86 = 9.240, p < 0.0005). Target contrasts 4.2% and lower produced relative myopia (4.2%: RE diff = -7.48 +/- 2.26 D, p = 0.987; 2.1%: RE diff = -7.22 +/- 2.77 D, p = 0.951) of similar amount to that observed in response to a featureless 0% contrast target (RE diff = -9.11 +/- 4.68 D). For target contrast levels 47.5% and greater isometropia was maintained (95%: RE diff = 1.83 +/- 2.78 D; 67%: RE diff = 0.14 +/- 1.84 D; 47.5% RE diff = 0.25 +/- 1.82 D). Contrasts in between produced an intermediate amount of myopia (33.5%: RE diff = -2.81 +/- 1.80 D; 24%: RE diff = -3.45 +/- 1.64 D; 17%: RE diff = -3.19 +/- 1.54 D; 12%: RE diff = -4.08 +/- 3.56 D; 8.5%: RE diff = -4.09 +/- 3.60 D). We conclude that image contrast provides important visual information for the eye growth control system or that contrast must reach a threshold value for some other emmetropization signal to function. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In stereo vision, regions with ambiguous or unspecified disparity can acquire perceived depth from unambiguous regions. This has been called stereo capture, depth interpolation or surface completion. We studied some striking induced depth effects suggesting that depth interpolation and surface completion are distinct stages of visual processing. An inducing texture (2-D Gaussian noise) had sinusoidal modulation of disparity, creating a smooth horizontal corrugation. The central region of this surface was replaced by various test patterns whose perceived corrugation was measured. When the test image was horizontal 1-D noise, shown to one eye or to both eyes without disparity, it appeared corrugated in much the same way as the disparity-modulated (DM) flanking regions. But when the test image was 2-D noise, or vertical 1-D noise, little or no depth was induced. This suggests that horizontal orientation was a key factor. For a horizontal sine-wave luminance grating, strong depth was induced, but for a square-wave grating, depth was induced only when its edges were aligned with the peaks and troughs of the DM flanking surface. These and related results suggest that disparity (or local depth) propagates along horizontal 1-D features, and then a 3-D surface is constructed from the depth samples acquired. The shape of the constructed surface can be different from the inducer, and so surface construction appears to operate on the results of a more local depth propagation process.
Resumo:
There have been two main approaches to feature detection in human and computer vision - based either on the luminance distribution and its spatial derivatives, or on the spatial distribution of local contrast energy. Thus, bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of features in images? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square-wave and all Fourier components have a common phase. Observers used a cursor to mark where bars and edges were seen for different test phases (Experiment 1) or judged the spatial alignment of contours that had different phases (e.g. 0 degrees and 45 degrees ; Experiment 2). The feature positions defined by both tasks shifted systematically to the left or right according to the sign of the phase offset, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks (bars) and gradient peaks (edges), but not by energy peaks which (by design) predicted no shift at all. These results encourage models based on a Gaussian-derivative framework, but do not support the idea that human vision uses points of phase alignment to find local, first-order features. Nevertheless, we argue that both approaches are presently incomplete and a better understanding of early vision may combine insights from both. (C)2004 Elsevier Ltd. All rights reserved.
Resumo:
There have been two main approaches to feature detection in human and computer vision - luminance-based and energy-based. Bars and edges might arise from peaks of luminance and luminance gradient respectively, or bars and edges might be found at peaks of local energy, where local phases are aligned across spatial frequency. This basic issue of definition is important because it guides more detailed models and interpretations of early vision. Which approach better describes the perceived positions of elements in a 3-element contour-alignment task? We used the class of 1-D images defined by Morrone and Burr in which the amplitude spectrum is that of a (partially blurred) square wave and Fourier components in a given image have a common phase. Observers judged whether the centre element (eg ±458 phase) was to the left or right of the flanking pair (eg 0º phase). Lateral offset of the centre element was varied to find the point of subjective alignment from the fitted psychometric function. This point shifted systematically to the left or right according to the sign of the centre phase, increasing with the degree of blur. These shifts were well predicted by the location of luminance peaks and other derivative-based features, but not by energy peaks which (by design) predicted no shift at all. These results on contour alignment agree well with earlier ones from a more explicit feature-marking task, and strongly suggest that human vision does not use local energy peaks to locate basic first-order features. [Supported by the Wellcome Trust (ref: 056093)]
Resumo:
Objective of this work was to explore the performance of a recently introduced source extraction method, FSS (Functional Source Separation), in recovering induced oscillatory change responses from extra-cephalic magnetoencephalographic (MEG) signals. Unlike algorithms used to solve the inverse problem, FSS does not make any assumption about the underlying biophysical source model; instead, it makes use of task-related features (functional constraints) to estimate source/s of interest. FSS was compared with blind source separation (BSS) approaches such as Principal and Independent Component Analysis, PCA and ICA, which are not subject to any explicit forward solution or functional constraint, but require source uncorrelatedness (PCA), or independence (ICA). A visual MEG experiment with signals recorded from six subjects viewing a set of static horizontal black/white square-wave grating patterns at different spatial frequencies was analyzed. The beamforming technique Synthetic Aperture Magnetometry (SAM) was applied to localize task-related sources; obtained spatial filters were used to automatically select BSS and FSS components in the spatial area of interest. Source spectral properties were investigated by using Morlet-wavelet time-frequency representations and significant task-induced changes were evaluated by means of a resampling technique; the resulting spectral behaviours in the gamma frequency band of interest (20-70 Hz), as well as the spatial frequency-dependent gamma reactivity, were quantified and compared among methods. Among the tested approaches, only FSS was able to estimate the expected sustained gamma activity enhancement in primary visual cortex, throughout the whole duration of the stimulus presentation for all subjects, and to obtain sources comparable to invasively recorded data.
Resumo:
This research was concerned with the effects of pulsed current on the electrodeposition of chromium and copper. In the case of the latter metal, a novel application has been studied and a theory proposed for the ability to improve throwing power by the joint use of organic additives and pulsed reverse current. During the course of the research, several improvements were made to the pulse plating unit.Chromium. A study was made of the effect of square wave pulsed current on various physical properties of deposits from three hard chromium plating electrolytes. The effect of varying frequency at a duty cycle of 50% on the mean bulk internal stress, visual appearance, hardness, crack characteristics and surface topography of the electrodeposits was determined. X-ray diffraction techniques were used to study the phases present in the deposits. The effect of varying frequency on the cathodic efficiencies of the electrolytes was also determined. It was found that pulsed current reduced the internal stress of deposits from the sulphate catalysed electrolyte. It also reduced or eliminated cracking of deposits and reduced deposit brightness. Under certain conditions, pulsed current was found to induce the co-deposition of hydrides of chromium. Deposit hardness was found to be reduced by the use of pulsed current. Cathodic efficiencies of the high efficiency electrolytes were reduced by use of pulsed current although this effect was minimised at high frequencies. The sulphate catalysed electrolyte showed an increase in efficiency over the frequency range where hydrides were co-deposited.Copper. The polarisation behaviour of acid copper solutions containing polyethers, sulphopropyl sulphides and chloride ions was studied using both direct and pulse reverse current. The effect of these additives on the rest potentials of copper deposits immersed in the electrolyte was also studied. Hole Throwing Power on printed circuit boards was determined using a specially designed test cell. The effect of pulsed reverse current on the hole throwing power of commercially produced printed circuit boards was also studied. Polyethers were found to have an inhibiting effect on the deposition of copper whereas the sulphopropyl sulphides produced a stimulating (i.e. depolarising) effect. Studies of rest potentials made when both additives were present indicated that the sulphopropyl sulphide was preferentially adsorbed. The use of pulsed reverse current in solutions containing both polyether and sulphopropyl sulphide was found to cause desorption of the sulphopropyl sulphide at the cathode surface. Thus, at higher current densities, the inhibiting effect of the polyether produced an increase in the cathodic polarisation potential. At lower current densities, the depolarisation effect of the sulphopropyl sulphide could still occur. On printed circuit boards, this effect was found to produce an increase in the `hole throwing power' due to depolarisation of the holes relative to the surface of the boards. Typically, using direct current, hole/surface thickness ratios of 40% were obtained when plating 0.6 mm holes in a 3.2 mm thick board at a current density of 3 A/dm2 whereas using pulsed reverse current, ratios of 80% could be obtained at an equivalent rate of deposition. This was observed both in laboratory tests and on commercially plated boards.
Resumo:
Distortion or deprivation of vision during an early `critical' period of visual development can result in permanent visual impairment which indicates the need to identify and treat visually at-risk individuals early. A significant difficulty in this respect is that conventional, subjective methods of visual acuity determination are ineffective before approximately three years of age. In laboratory studies, infant visual function has been quantified precisely, using objective methods based on visual evoked potentials (VEP), preferential looking (PL) and optokinetic nystagmus (OKN) but clinical assessment of infant vision has presented a particular difficulty. An initial aim of this study was to evaluate the relative clinical merits of the three techniques. Clinical derivatives were devised, the OKN method proved unsuitable but the PL and VEP methods were evaluated in a pilot study. Most infants participating in the study had known ocular and/or neurological abnormalities but a few normals were included for comparison. The study suggested that the PL method was more clinically appropriate for the objective assessment of infant acuity. A study of normal visual development from birth to one year was subsequently conducted. Observations included cycloplegic refraction, ophthalmoscopy and preferential looking visual acuity assessment using horizontally and vertically oriented square wave gratings. The aims of the work were to investigate the efficiency and sensitivity of the technique and to study possible correlates of visual development. The success rate of the PL method varied with age; 87% of newborns and 98% of infants attending follow-up successfully completed at least one acuity test. Below two months monocular acuities were difficult to secure; infants were most testable around six months. The results produced were similar to published data using the acuity card procedure and slightly lower than, but comparable with acuity data derived using extended PL methods. Acuity development was not impaired in infants found to have retinal haemorrhages as newborns. A significant relationship was found between newborn binocular acuity and anisometropia but not with other refractive findings. No strong or consistent correlations between grating acuity and refraction were found for three, six or twelve months olds. Improvements in acuity and decreases in levels of hyperopia over the first week of life were suggestive of recovery from minor birth trauma. The refractive data was analysed separately to investigate the natural history of refraction in normal infants. Most newborns (80%) were hyperopic, significant astigmatism was found in 86% and significant anisometropia in 22%. No significant alteration in spherical equivalent refraction was noted between birth and three months, a significant reduction in hyperopia was evident by six months and this trend continued until one year. Observations on the astigmatic component of the refractive error revealed a rather erratic series of changes which would be worthy of further investigation since a repeat refraction study suggested difficulties in obtaining stable measurements in newborns. Astigmatism tended to decrease between birth and three months, increased significantly from three to six months and decreased significantly from six to twelve months. A constant decrease in the degree of anisometropia was evident throughout the first year. These findings have implications for the correction of infantile refractive error.
Resumo:
The locus of origin of the pattern evoked electroretinogram, (PERG), has been the subject of considerable discussion. A novel approach was adopted in this study to further elaborate the nature of the PERG evoked by pattern onset/offset presentation. The PERG was found to be linearly related to stimulus contrast and in particular was linearly related to the temporal contrast of the retinal image, when elicited by patterns of low spatial frequency. At high spatial frequencies the retinal image contrast is significantly reduced because of optical degradation. This is described by the eye's modulation transfer function (MTF). The retinal contrast of square wave grating and chequerboard patterns of increasing spatial frequency were found by filtering their Fourier transforms by the MTF. The filtered pattern harmonics were then resynthesised to constitute a profile of retinal image illuminance from which the temporal and spatial contrast of the image could be calculated. If the PERG is a pure illuminance response it should be spatially insensitive and dependent upon the temporal contrast of stimulation. The calculated loss of temporal contrast for finer patterns was expressed as a space-averaged temporal contrast attentuation factor. This factor, applied to PERGs evoked by low spatial frequency patterns, was used to predict the retinal illuminance response elicited by a finer pattern. The predicted response was subtracted from the recorded signal and residual waveform was proposed to represent specific activity. An additional correction for the attenuation of spatial contrast was applied to the extracted pattern specific response. Pattern specific responses computed for different spatial frequency patterns in this way are the predicted result of iso-contrast pattern stimulation. The pattern specific responses demonstrate a striking bandpass spatial selectivity which peaks at higher spatial frequencies in the more central retina. The variation of spatial sensitivity with eccentricity corresponds closely with estimated ganglion receptive field centre separation and psychophysical data. The variation of retinal structure with eccentricity, in the form of the volumes of the nuclear layers, was compared with the amplitudes of the computed retinal illuminance and pattern specific responses. The retinal illuminance response corresponds more closely to the outer and inner nuclear layers whilst the pattern specific response appears more closely related to the ganglion cell layer. In general the negative response transients correspond to the more proximal retinal layers. This thesis therefore supports the proposed contribution of proximal retinal cell activity to the PERG and describes techniques which may be further elaborated for more detailed studies of retinal receptive field dimensions.
Resumo:
Differential clinical diagnosis of the parkinsonian syndromes, viz., Parkinson’s disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) can be difficult. Eye movement problems, however, are a chronic complication of many of these disorders and may be a useful aid to diagnosis. Hence, the presence in PSP of vertical supranuclear gaze palsy, fixation instability, lid retraction, blepharospasm, and apraxia of eyelid opening and closing is useful in separating PD from PSP. Moreover, atypical features of PSP include slowing of upward saccades, moderate slowing of downward saccades, the presence of a full range of voluntary vertical eye movements, a curved trajectory of oblique saccades, and absence of square-wave jerks. Downgaze palsy is probably the most useful diagnostic clinical symptom of PSP. By contrast, DLB patients are specifically impaired in both reflexive and saccadic execution and in the performance of more complex saccadic eye movement tasks. Problems in convergence in DLB are also followed by akinesia and rigidity. Abnormal ocular fixation may occur in a significant proportion of MSA patients along with excessive square-wave jerks, a mild supranuclear gaze palsy, a gaze-evoked nystagmus, a positioning down-beat nystagmus, mild-moderate saccadic hypometria, impaired smooth pursuit movements, and reduced vestibulo-ocular reflex (VOR) suppression. There may be considerable overlap between the eye movement problems characteristic of the various parkinsonian disorders, but taken together with other signs and symptoms, can be a useful aid in differential diagnosis, especially in the separation of PD and PSP.
Resumo:
Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.
Resumo:
Fiber optical sensors have played an important role in applications for monitoring the health of civil infrastructures, such as bridges, oil rigs, and railroads. Due to the reduction in cost of fiber-optic components and systems, fiber optical sensors have been studied extensively for their higher sensitivity, precision and immunity to electrical interference compared to their electrical counterparts. A fiber Bragg grating (FBG) strain sensor has been employed for this study to detect and distinguish normal and lateral loads on rail tracks. A theoretical analysis of the relationship between strain and displacement under vertical and horizontal strains on an aluminum beam has been performed, and the results are in excellent agreement with the measured strain data. Then a single FBG sensor system with erbium-doped fiber amplifier broadband source has been carried out. Force and temperature applied on the system have resulted in changes of 0.05 nm per 50 με and 0.094 nm per 10 oC at the center wavelength of the FBG. Furthermore, a low cost fiber-optic sensor system with a distributed feedback (DFB) laser as the light source has been implemented. We show that it has superior noise and sensitivity performances compared to strain gauge sensors. The design has been extended to accommodate multiple sensors with negligible cross talk. When two cascaded sensors on a rail track section are tested, strain readings of the sensor 20 inches away from the position of applied force decay to one seventh of the data of the sensor at the applied force location. The two FBG sensor systems can detect 1 ton of vertical load with a square wave pattern and 0.1 ton of lateral loads (3 tons and 0.5 ton, respectively, for strain gauges). Moreover, a single FBG sensor has been found capable of detecting and distinguishing lateral and normal strains applied at different frequencies. FBG sensors are promising alternatives to electrical sensors for their high sensitivity,ease of installation, and immunity to electromagnetic interferences.