938 resultados para Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV
Resumo:
O objetivo deste trabalho foi avaliar a suscetibilidade das lagartas Anticarsia gemmatalis (Lepidoptera: Erebidae) e Chrysodeixis includens (Lepidoptera: Noctuidae) às proteínas Cry1 e Vip3A, bem como determinar se há a interação entre essas proteínas no controle das duas espécies. Bioensaios com as proteínas isoladas e em combinações foram realizados, e as concentrações letais CL50 e CL90 foram estimadas para cada condição. As proteínas Cry1Aa, Cry1Ac e Vip3Af foram as mais efetivas no controle de A. gemmatalis, enquanto Cry1Ac, Vip3Aa e Vip3Af foram mais efetivas no de C. includens. As proteínas Cry1Ac e Cry1Ca causaram maior inibição do desenvolvimento das larvas sobreviventes à CL50, em ambas as espécies. Combinações entre Vip3A e Cry1 apresentam efeito sinérgico no controle das espécies e a combinação Vip3Aa+Cry1Ea destaca-se no controle de A. gemmatalis e C. includens. Essas proteínas combinadas são promissoras na construção de plantas piramidadas, para o controle simultâneo das pragas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Production and Use of Heteroptera Predators for the Biological Control of Eucalyptus Pests in Brazil
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Egg parasitism of Trichogramma pretiosum strain RV when presented with eggs of Anticarsia gemmatalis and Pseudoplusia includens was investigated at 18, 20, 22, 25, 28, 30 and 32 degrees C. The number of eggs parasitized per day decreased for both hosts as a function of the age of parasitoids, reaching 80% of lifetime parasitism more rapidly as temperature increased; on the 4th day at 32 degrees C and on the 12th day at 18 degrees C. The lifetime number of parasitized P. includens eggs achieved by the parasitoid maintained at 20 degrees C (44.95 +/- 3.94) differed from the results recorded at 32 degrees C (28.5 +/- 1.33). Differently, the lifetime number of A. gemmatalis parasitized eggs did not differ among the temperatures. When T. pretiosum reached 100% of lifetime parasitism, each adult female had parasitized from 28.5 +/- 1.33 to 44.95 +/- 3.94 and from 29.58 +/- 2.80 to 45.36 +/- 4.50 P. includens and A. gemmatalis eggs, respectively. Also, the longevity of these adult T. pretiosum females, for which P. includens or A. gemmatalis eggs were offered, was inversely correlated with temperature. Not only were the survival curves of those adult T. pretiosum females of type I when they were presented with eggs of A. gemmatalis but also with eggs of P. includens, i.e., there was an increase in the mortality rate with time as the temperature increased. In conclusion, T. pretiosum strain RV parasitism was impacted by temperature when on both host eggs; however, the parasitoid still exhibited high survival and, more importantly, high number of parasitized A. gemmatalis and P. includens eggs even at the extremes tested temperatures of 18 and 32 degrees C. Those results indicate that T. pretiosum strain RV might be well adapted to this studied temperature range and, thus, be potentially suitable for use in biological control programs of P. includens and A. gemmatalis in different geographical areas that fits in this range. It is important to emphasize the results here presented are from laboratory studies and, therefore, field trials still need to be carried out in the future with this strain in order to support the full development of the technology intend to use this egg parasitoid in soybean fields worldwide. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Larven der Eulenfalter, Gattung Agrotis (Lepidoptera: Noctuidae), sind Schädlinge in der Landwirtschaft, welche gravierende Fraßschäden an bodennahen Pflanzenteilen verursachen. Häufig kommt es zum Absterben der noch jungen Pflanzen oder zu Beschädigungen der pflanzlichen Produkte, was zu finanziellen Ertragsverlusten führt. Zwei der wichtigsten landwirtschaftlichen Schädlinge der Gattung Agrotis sind die Larven der Saateule (Agrotis segetum) und der Ypsiloneule (Agrotis ipsilon), welche bisher überwiegend mittels chemischer Pestizide bekämpft werden. Als eine umweltfreundliche, nachhaltige und vielversprechende Alternative in der Bekämpfung wird der Einsatz von Baculoviren berücksichtigt. Baculoviren zeichnen sich durch eine hohe Virulenz und einem sehr engen Wirtsbereich aus. Häufig werden nur wenige nah verwandte Arten der gleichen Gattung infiziert. Aus der Gattung Agrotis wurden bisher mindestens vier Baculoviren isoliert und charakterisiert, welche als potentielle biologische Pflanzenschutzmittel in Frage kommen; sie gehören zu zwei Gattungen der Baculoviren: rnAlphabaculovirusrn(i) Agrotis segetum nucleopolyhedrovirus A (AgseNPV-A)rn(ii) Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B)rn(iii) Agrotis ipsilon nucleopolyhedrovirus (AgipNPV)rnBetabaculovirusrn(i) Agrotis segetum granulovirus (AgseGV).rnDie Genome der AgseNPV-A, AgipNPV sowie des AgseGV wurden in vorherigen Studien bereits vollständig sequenziert und publiziert. In der vorgelegten Dissertation wurde das AgseNPV-B sequenziert und umfassend mit AgseNPV-A und AgipNPV verglichen. Das Genom von AgseNPV-B ist 148981 Kbp groß und kodiert ….. offene Leseraster. Phylogenetische Analysen zeigen eine enge Verwandtschaft dieser drei Viren und klassifizieren AgseNPV-B als eine neue Art innerhalb der Gattung Alphabaculovirus. Auf Basis der vorhandenen Genomsequenzen konnte eine PCR-basierende Methode zur Detektion und Quantifizierung on AgseNPV-A, AgseNPV-B, AgipNPV und AgseGV etabliert werden. Dises Verfahren ermöglichte die Quantifizierung von AgseNPV-B und AgseGV in Larven von A. segetum, die von beiden Viren zeitgleichinfiziert waren. Durch das gemeinsame Auftreten dieser beiden Wiren innerhalb eines Wirtsindividuums stellte sich die Frage, welche Art der Interaktion bei einer Ko-Infektion vorliegt. Durch Mischinfektionsversuche von AgseNPV-B und AgseGV konnte gezeigt werden, dass beide Viren um die Ressourcen der Larven konkurrieren. Eine für landwirtschaftliche Zwecke vorteilige Interaktion, wie das vorzeitige Verenden der Larven, das bereits für andere interagierende Baculoviren nachgewiesen wurde, konnte ausgeschlossen werden. Neben den Mischinfektionsversuchen wurden auch AgseGV und AgseNPV-B einzeln auf ihre Eignung als biologisches Pflanzenschutzmittel getestet. AgseGV zeigte in den Laborversuchen eine relativ langsame Wirkung, während AgseNPV-B durchaus Potential für ein rasche Abtötung besitzt. rnDie durchgeführten Aktivitätsstudien und die Charakterisierung von AgseNPV-B als neue Art erlauben ein vertieftes biologisches und molekulares Verständnis des Virus legen den Grundstein für und eine mögliche spätere Zulassung als Pflanzenschutzmittel. Die Methode zur Identifizierung und Quantifizierung der Agrotis-Baculoviren stellt ein wichtiges Instrument in der Qualitätskontrolle für Produzenten dar und ermöglicht zudem weitere Untersuchungen von Agrotis-Baculoviren in Mischinfektionen.
Resumo:
Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Resumo:
Background: Volatiles emitted by herbivore-infested plants are highly attractive to parasitoids and therefore have been proposed to be part of an indirect plant defense strategy. However, this proposed function of the plant-provided signals remains controversial, and it is unclear how specific and reliable the signals are under natural conditions with simultaneous feeding by multiple herbivores. Phloem feeders in particular are assumed to interfere with plant defense responses. Therefore, we investigated how attack by the piercing-sucking cicadellid Euscelidius variegatus influences signaling by maize plants in response to the chewing herbivore Spodoptera littoralis.Results: The parasitoid Cotesia marginiventris strongly preferred volatiles of plants infested with its host S. littoralis. Overall, the volatile emissions induced by S. littoralis and E. variegatus were similar, but higher levels of certain wound-released compounds may have allowed the wasps to specifically recognize plants infested by hosts. Expression levels of defense marker genes and further behavioral bioassays with the parasitoid showed that neither the physiological defense responses nor the attractiveness of S. littoralis infested plants were altered by simultaneous E. variegatus attack.Conclusions: Our findings imply that plant defense responses to herbivory can be more robust than generally assumed and that ensuing volatiles convey specific information about the type of herbivore that is attacking a plant, even in complex situations with multiple herbivores. Hence, the results of this study support the notion that herbivore-induced plant volatiles may be part of a plant's indirect defense stratagem. © 2010 Erb et al; licensee BioMed Central Ltd.
Resumo:
Plant defences vary in space and time, which may translate into specific herbivore-foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within-plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4-benzoxazin-3-one derivatives (BXDs), affects the foraging behaviour of two leaf-chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well-adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD-free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non-adapted herbivores and thereby likely contribute to feeding niche differentiation
Resumo:
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.
Resumo:
Plants respond to herbivory by reprogramming their metabolism. Most research in this context has focused on locally induced compounds that function as toxins or feeding deterrents. We developed an ultra-high-pressure liquid chromatography time-of-flight mass spectrometry (UHPLC-TOF-MS)-based metabolomics approach to evaluate local and systemic herbivore-induced changes in maize leaves, sap, roots and root exudates without any prior assumptions about their function. Thirty-two differentially regulated compounds were identified from Spodoptera littoralis-infested maize seedlings and isolated for structure assignment by microflow nuclear magnetic resonance (CapNMR). Nine compounds were quantified by a high throughput direct nano-infusion tandem mass spectrometry/mass spectrometry (MS/MS) method. Leaf infestation led to a marked local increase of 1,3-benzoxazin-4-ones, phospholipids, N-hydroxycinnamoyltyramines, azealic acid and tryptophan. Only few changes were found in the root metabolome, but 1,3-benzoxazin-4-ones increased in the vascular sap and root exudates. The role of N-hydroxycinnamoyltyramines in plant–herbivore interactions is unknown, and we therefore tested the effect of the dominating p-coumaroyltyramine on S. littoralis. Unexpectedly, p-coumaroyltyramine was metabolized by the larvae and increased larval growth, possibly by providing additional nitrogen to the insect. Taken together, this study illustrates that herbivore attack leads to the induction of metabolites that can have contrasting effects on herbivore resistance in the leaves and roots.
Resumo:
The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences.