965 resultados para Spinal cord injury(SCI)
Resumo:
Objectives: Failed back surgery syndrome (FBSS) patients experience pain, functional disability, and reduced health-related quality of life (HRQoL) despite anatomically successful surgery. Examining sub-dimensions of health outcomes measures provides insight into patient well-being. Materials and Methods: The international multicenter PROCESS trial collected detailed HRQoL (EuroQol-5D; Short-Form 36) and function (Oswestry Disability Index) information on 100 FBSS patients. Results: At baseline, patients reported moderate-to-severe leg and back pain adversely affecting all dimensions of function and HRQoL. Compared with conventional medical management alone, patients also receiving spinal cord stimulation (SCS) reported superior pain relief, function, and HRQoL at six months on overall and most sub-component scores. The majority of these improvements with SCS were sustained at 24 months. Nonetheless, 36-40% of patients experienced ongoing marked disability (standing, lifting) and HRQoL problems (pain/discomfort). Conclusions: Longer-term patient management and research must focus on these refractory FBSS patients with persisting poor function and HRQoL outcomes.
Resumo:
RÉSUMÉ Introduction: l'histoire naturelle et la physiopathologie des infarctus de la moelle épinière restent largement inconnues. En effet, la plupart des études cliniques portent sur des patients qui ont souffert d'infarctus médullaire secondaire à des chirurgies aortiques ou des hypotensions prolongées. Méthode: ce travail analyse les données cliniques, le laboratoire, l'imagerie (IRM) et l'évolution de 27 patients souffrant d'infarctus de la moelle épinière admis dans le service de Neurologie du CHUV. Parmi ces patients, il y avait 11 hommes et 16 femmes (âge moyen de 56 ans, tranche d'âge de 19 à 80 ans). Résultats: dix patients (37%) souffraient d'infarctus de l'artère spinale antérieure, 4 (15%) d'infarctus unilatéraux antérieurs, 4 (15%) unilatéraux postérieurs, 3 (11%) d'infarctus centraux, 2 (7%) d'infarctus des artères spinales postérieures, 2 (7%) d'infarctus transverse tandis que 2 patients présentaient des tableaux cliniques inclassables. Vingt patients (74%) n'avaient pas d'étiologie identifiable. Les patients avec infarctus centraux ou transverses présentaient fréquemment (40%) des artériopathies périphériques et tous les infarctus transverses survenaient à la suite d'hypotensions artérielles prolongées. Le début de tous les autres types d'infarctus était associé à des facteurs mécaniques (p=0.02} et ces patients avaient fréquemment des pathologies du rachis (p=0.003) au niveau de la lésion médullaire. Dans ces cas, les données cliniques suggèrent une lésion d'une racine nerveuse au niveau de l'infarctus médullaire compromettant mécaniquement le flux de son artère radiculaire. L'évolution clinique était généralement favorable, seuls 13 patients (48%) présentaient une atteinte significative de la marche à la sortie de l'hôpital. Conclusion: ce travail montre qu'il existe 2 types principaux d'infarctus de la moelle épinière : d'une part les infarctus dans le territoire d'une artère radiculaire (infarctus de l'artère spinale antérieure, des artères spinales postérieures et infarctus unilatéraux) et d'autre part les hypoperfusions régionales globales de la moelle épinière (infarctus centraux et transverses). Chacune de ces 2 catégories d'infarctus ont des caractéristiques cliniques, radiologiques, physiopathologiques et pronostiques distinctes.
Resumo:
BACKGROUND: The effects of thoracolumbal spinal cord stimulation (SCS) are confined to restricted microcirculatory areas. This limitation is generally attributed to a predominantly segmental mode of action on the autonomic nervous system. The goal of this study was to determine whether SCS applied close to supraspinal autonomic centers would induce generalized hemodynamic changes that could explain its alleged antianginal properties. METHODS: Invasive hemodynamic tests were performed in 15 anesthetized Göttingen minipigs submitted to iterative cervical SCS of various duration and intensity. RESULTS: Hemodynamic changes exceeding 10% were observed in 59 of 68 SCS sessions (87%). Their extent and time to peak varied with SCS intensity. At 2, 5, and 10 V, significant (t test p < 0.05) peak changes occurred in cardiac output (+34%, +29%, and +28%, respectively), stroke volume (+19%, +16%, +15%), mean pressure (+9%, +27%, +40%), heart rate (+14%, +23%, +14%), systemic (-17%, NS, NS), and pulmonary vascular (25%, NS, NS) resistances. Strikingly, at 2 V, the increase in cardiac output (+34%) was higher than the synchronous rise in rate pressure product (+22%), indicating efficient cardiac work. At 10 V, however, the cardiac work was inefficient (rate pressure product + 53%/cardiac output + 28%). CONCLUSIONS: Low-voltage cervical neuromodulation reduces the postcharge and improves cardiac work efficiency. The resulting reduction in oxygen myocardial demand may account for decreased anginal pain.
Resumo:
Spinal cord stimulation (SCS) represents a well established procedure in the treatment of critical ischemia of the extremities. The knowledge and distribution of SCS in Austria are still poor despite satisfactory data. The evaluations and recommendations from the consensus group demonstrate that SCS might represent a suitable additional treatment option for selected patients with peripheral arterial disease (PAD) when performed in experienced centers under clear indications. The complication rate is low and mainly due to device-related problems. There are valid scientific criteria proving that SCS treatment can reduce the risk of amputation, decrease pain and improve wound healing in patients with non-reconstructable, non-unstable PAD in stages IV and V according to Rutherford (stages III and IV according to Fontaine).This effect is more evident when patient selection is based on tcPO(2) measurements. A careful selection of patients is essential for the success of this neuromodulatory treatment, in addition a certain degree of patient compliance in terms of perception and understanding of the therapy is mandatory.
Non-traumatic spinal cord ischaemia in childhood - clinical manifestation, neuroimaging and outcome.
Resumo:
BACKGROUND: Spinal cord ischaemia is rare in childhood and information on clinical presentation and outcome is scarce. METHODS: This is a retrospective analysis of eight patients and 75 additional cases from the literature. Data search included: patient's age, primary manifestation, risk factors, neuroimaging and outcome. RESULTS: Five female and three male patients gave consent to participate. Mean age was 12.5 years (10-15 years). Six patients presented with paraplegia; this was preceded by pain in four. Brown Sequard syndrome and quadriparesis were the two others' presenting condition. Sensation levels were thoracolumbar in seven cases. Bladder dysfunction only or bladder and bowel dysfunction were reported in eight and five patients respectively. Time to maximal symptom manifestation was <12 h in 7/8. Risk factors included surgery, minor trauma, recent infection, and thrombophilia. Mean follow-up was 3.3 years (0.25-6.3 years). Three patients remained wheelchair-dependent and three patients were ambulatory without aid. Bladder function recovered fully in five children. Most affected aspects of quality of life were physical and mental well-being and self-perception. T2-weighted-MR images showed pencil-like hyperintensity (8/8) in sagittal and H-shaped or snake-eyes-like lesion (6/8) in axial views. Analyses of all 83 patients were in congruence with the above results of the study group. CONCLUSION: Spinal cord ischaemia in childhood presenting with pain, paraplegia, and bladder dysfunction has high morbidity concerning motor problems and quality of life. Acute arterial ischaemic event in children seems similar to adult events with respect to clinical presentation and, surprisingly, also in outcome.
Resumo:
Cobalt-labelled motoneuron dendrites of the frog spinal cord at the level of the second spinal nerve were photographed in the electron microscope from long series of ultrathin sections. Three-dimensional computer reconstructions of 120 dendrite segments were analysed. The samples were taken from two locations: proximal to cell body and distal, as defined in a transverse plane of the spinal cord. The dendrites showed highly irregular outlines with many 1-2 microns-long 'thorns' (on average 8.5 thorns per 100 microns 2 of dendritic area). Taken together, the reconstructed dendrite segments from the proximal sites had a total length of about 250 microns; those from the distal locations, 180 microns. On all segments together there were 699 synapses. Nine percent of the synapses were on thorns, and many more close to their base on the dendritic shaft. The synapses were classified in four groups. One third of the synapses were asymmetric with spherical vesicles; one half were symmetric with spherical vesicles; and one tenth were symmetric with flattened vesicles. A fourth, small class of asymmetric synapses had dense-core vesicles. The area of the active zones was large for the asymmetric synapses (median value 0.20 microns 2), and small for the symmetric ones (median value 0.10 microns 2), and the difference was significant. On average, the areas of the active zones of the synapses on thin dendrites were larger than those of synapses on large calibre dendrites. About every 4 microns 2 of dendritic area received one contact. There was a significant difference between the areas of the active zones of the synapses at the two locations. Moreover, the number per unit dendritic length was correlated with dendrite calibre. On average, the active zones covered more than 4% of the dendritic area; this value for thin dendrites was about twice as large as that of large calibre dendrites. We suggest that the larger active zones and the larger synaptic coverage of the thin dendrites compensate for the longer electrotonic distance of these synapses from the soma.
Resumo:
A significant postoperative problem in patients undergoing excision of intramedullary tumors is painful dysesthesiae, attributed to various causes, including edema, arachnoid scarring and cord tethering. The authors describe a technique of welding the pia and arachnoid after the excision of intramedullary spinal cord tumors used in seven cases. Using a fine bipolar forcep and a low current, the pial edges of the myelotomy were brought together and welded under saline irrigation. A similar method was used for closing the arachnoid while the dura was closed with a running 5-0 vicryl suture. Closing the pia and arachnoid restores normal cord anatomy after tumor excision and may reduce the incidence of postoperative painful dysesthesiae.
Resumo:
We report a 45-year old woman with a pilomyxoid astrocytoma (PMA) of the cervical spinal cord with a rapid clinical course and fatal outcome. Moreover, two family members of the patient were reported to have brainstem tumours with similar histopathological features. This may be the first report of familial PMAs.
Resumo:
Trisomy 13 was detected in 10% of mouse embryos obtained from pregnant females which were doubly heterozygous for Robertsonian chromosomes involving chromosome 13. The developing dorsal root ganglia and spinal cords were examined in trisomy 13 and littermate control mice between days 12 and 18 of gestation (E12-18). The overall size of the dorsal root ganglia and number of ganglion cells within a given ganglion were not altered, but the number of neurons immunoreactive for calbindin and calretinin was reduced. The trisomic spinal cord was reduced in size with neurons lying in a tightly compact distribution in the gray matter. In trisomic fetuses, the extent of the neuropil of the spinal cord was reduced, and may represent a diminished field of interneuronal connectivity, due to reduced arborization of dendritic processes of the neurons present, particularly of calbindin-immunostained neurons. Furthermore, the subpopulation of calretinin-immunoreactive neurons and axons was also reduced in developing trisomic gray and white matter, respectively. Thus, overexpression of genes on mouse chromosome 13 exerts a deleterious effect on the development of neuropil, affecting both dendritic and axonal arborization in the trisomy 13 mouse. The defect of calbindin or calretinin expression by subsets of dorsal root ganglion or spinal cord neurons may result from deficient cell-to-cell interactions with targets which are hypoplastic.
Resumo:
The electrical stimulation of the dorsal columns of the spinal cord exerts a dual analgesic and vasodilatory effect on ischemic tissues. It is increasingly considered a valuable method to treat severe and otherwise intractable coronary and peripheral artery disease. The quality of the results depends from both a strict selection of the patients by vascular specialists and the frequency and quality of the follow-up controls. However the indications, limits, mode of action and results of spinal cord stimulation are still poorly understood. This article, based on a personal experience of 164 implantations for peripheral and coronary artery disease, aims to draw attention to this technique and to provide information on recent and future developments.
Resumo:
The expression of microtubule-associated protein 1a (MAP1a) in the developing rat spinal cord was studied using the monoclonal antibody BW6. Immunoblots of microtubule preparations revealed the presence of MAP1a in spinal cord tissue of rats aged embryonal day 16 and postnatal day 0. The spinal cord matrix layer, between embryonal days 12-17, displayed a pattern of MAP1a-positive processes, horizontally oriented in between the membrane limitans interna and externa. The mantle layer stained intensely for MAP1a between embryonal day 12 and postnatal day 2. MAP1a was found in neuronal cell bodies, axons and dendrites, located mainly in the ventral and intermediate mantle layer. In the marginal layer, MAP1a-positive axons could be observed between embryonal days 14-18. During further development, the intensity of the MAP1a staining in the spinal columns gradually decreased. These expression patterns indicate an involvement of MAP1a in the proliferation and differentiation of neuroblasts, and the maturation of the long spinal fiber systems, i.e. early events in spinal cord development
Resumo:
"MotionMaker (TM)" is a stationary programmable test and training system for the lower limbs developed at the 'Ecole Polytechnique Federale de Lausanne' with the 'Fondation Suisse pour les Cybertheses'.. The system is composed of two robotic orthoses comprising motors and sensors, and a control unit managing the trans-cutaneous electrical muscle stimulation with real-time regulation. The control of the Functional Electrical Stimulation (FES) induced muscle force necessary to mimic natural exercise is ensured by the control unit which receives a continuous input from the position and force sensors mounted on the robot. First results with control subjects showed the feasibility of creating movements by such closed-loop controlled FES induced muscle contractions. To make exercising with the MotionMaker (TM) safe for clinical trials with Spinal Cord Injured (SCI) volunteers, several original safety features have been introduced. The MotionMaker (TM) is able to identify and manage the occurrence of spasms. Fatigue can also be detected and overfatigue during exercise prevented.