996 resultados para Spatial navigation
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.
Resumo:
Forest managers, stakeholders and investors want to be able to evaluate economic, environmental and social benefits in order to improve the outcomes of their decisions and enhance sustainable forest management. This research developed a spatial decision support system that provides: (1) an approach to identify the most beneficial locations for agroforestry projects based on the biophysical properties and evaluate its economic, social and environmental impact; (2) a tool to inform prospective investors and stakeholders of the potential and opportunities for integrated agroforestry management; (3) a simulation environment that enables evaluation via a dashboard with the opportunity to perform interactive sensitivity analysis for key parameters of the project; (4) a 3D interactive geographic visualization of the economic, environmental and social outcomes, which facilitate understanding and eases planning. Although the tool and methodology presented are generic, a case study was performed in East Kalimantan, Indonesia. For the whole study area, it was simulated the most suitable location for three different plantation schemes: monoculture of timber, a specific recipe (cassava, banana and sugar palm) and different recipes per geographic unit. The results indicate that a mixed cropping plantation scheme, with different recipes applied to the most suitable location returns higher economic, environmental and social benefits.
Resumo:
Nowadays, participatory processes attending the need for real democracy and transparency in governments and collectives are more needed than ever. Immediate participation through channels like social networks enable people to give their opinion and become pro-active citizens, seeking applications to interact with each other. The application described in this dissertation is a hybrid channel of communication of questions, petitions and participatory processes based on Public Participation Geographic Information System (PPGIS), Participation Geographic Information System (PGIS) and ‘soft’ (subjective data) Geographic Information System (SoftGIS) methodologies. To achieve a new approach to an application, its entire design is focused on the spatial component related with user interests. The spatial component is treated as main feature of the system to develop all others depending on it, enabling new features never seen before in social actions (questions, petitions and participatory processes). Results prove that it is possible to develop a working application mainly using open source software, with the possibility of spatial and subject filtering, visualizing and free download of actions within application. The resulting application empowers society by releasing soft data and defines a new breaking approach, unseen so far.