986 resultados para Space objects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While much narrative inquiry is concerned with issues of self and identity, doing study on the processes (the how) of self-making offers ongoing challenges to methodology. This article explores the creation of a dialogic space that assisted young adolescents to write about themselves and their daily lives using email journals as an alternative to face-to-face interviews. With the researcher acting as a listener-responder, and in the absence of researcher-designed questions, a dynamic field was opened up for participant-led self-making to emerge over a six month period of self-reflective written expression. The article describes a shared email relationship based on a dialogic pattern of thinking, writing, listening and response intended to foster participants’ voices as ontological narratives of self. Findings show the use of email journals created a synergy for self-disclosure and a safe space for self-expression where the willingness of participants to be themselves was encouraged. The self-representations of a specific group of gifted young adolescents thus emerged as written versions of “who” they are —offering data that differs from interview approaches and contributing to discussion of the value of ontology narratives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing recommendation systems often recommend products to users by capturing the item-to-item and user-to-user similarity measures. These types of recommendation systems become inefficient in people-to-people networks for people to people recommendation that require two way relationship. Also, existing recommendation methods use traditional two dimensional models to find inter relationships between alike users and items. It is not efficient enough to model the people-to-people network with two-dimensional models as the latent correlations between the people and their attributes are not utilized. In this paper, we propose a novel tensor decomposition-based recommendation method for recommending people-to-people based on users profiles and their interactions. The people-to-people network data is multi-dimensional data which when modeled using vector based methods tend to result in information loss as they capture either the interactions or the attributes of the users but not both the information. This paper utilizes tensor models that have the ability to correlate and find latent relationships between similar users based on both information, user interactions and user attributes, in order to generate recommendations. Empirical analysis is conducted on a real-life online dating dataset. As demonstrated in results, the use of tensor modeling and decomposition has enabled the identification of latent correlations between people based on their attributes and interactions in the network and quality recommendations have been derived using the 'alike' users concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction In 1952 the Nathan report stated that: Some of the most valuable activities of voluntary societies consist, however, in the fact that they may be able to stand aside from and criticize State action or inaction, in the interests of the inarticulate man in the street. Some 60 years later it remained the case that if a voluntary society wanted to gain or retain charitable status then, contrary to the Nathan report, the one thing it could not do was set itself up with the purpose of criticizing State action or inaction. This legal position was adopted by the authorities in Australia with the Australian Taxation Office (ATO) noting in Taxation Ruling TR2005/21: 102. An institution or fund is not charitable if its purpose is advocating a political party or cause, attempting to change the law or government policy, or propagating or promoting a particular point of view. So, why, if it is such a valuable activity, have governments steadfastly refused to allow charities to have as their purpose the freedom to advocate in this way and how has this situation been affected by the recent High Court of Australia decision in Aid/Watch v Commissioner of Taxation? This article proposes to address such questions. Beginning with some background history, it explains that, initially, the current constraints did not apply. Then it looks at the nature of these constraints: how does the law define what constitutes the type of political activity that a charity must not undertake? What is the rationale for prohibition? How has the judiciary contributed to the development of the law in this area in recent years? This will lead into a consideration of the Aid/Watch case and the implications arising from the recent final decision. The article concludes by reflecting on what has changed and why the view on this contentious matter now looks different from Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter examines the changing landscape of literacy in the early years and considers how the diverse spaces and places in which early literacy learning is promoted and takes place can be conceptualised and researched. We argue that early literacy research needs to extend beyond a language focus to become attentive to the embodied, material dimensions of learning environments. The discussion is organised in terms of three kinds of spaces within which children encounter opportunities to participate in communication and representational practices. These are domestic spaces, commercial spaces and spaces of formal education. Theories of spatiality and material semiotics provide the conceptual tools for interpreting research studies located in these spaces. Implications for educators are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural convection thermal boundary layer adjacent to an inclined flat plate and inclined walls of an attic space subject to instantaneous and ramp heating and cooling is investigated. A scaling analysis has been performed to describe the flow behaviour and heat transfer. Major scales quantifying the flow velocity, flow development time, heat transfer and the thermal and viscous boundary layer thicknesses at different stages of the flow development are established. Scaling relations of heating-up and cooling-down times and heat transfer rates have also been reported for the case of attic space. The scaling relations have been verified by numerical simulations over a wide range of parameters. Further, a periodic temperature boundary condition is also considered to show the flow features in the attic space over diurnal cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an era of normative standardised literacy curriculum continuing to make space for culturally responsive literacy pedagogy is on ongoing challenge for early childhood educators. Collaborative participatory research and ethnographic studies of teachers who accomplish innovative and inclusive early childhood education in culturally diverse high poverty communities is urgent for the profession. Such pedagogies involve complex understandings of the cultural and political histories, and the dynamic potential, of the places in which school communities are located. By incorporating the study of local histories and biographies and researching neighbourhood changes teachers adapt mandated curriculum to maintain community knowledges and allow for positive identity work at the same time as they meet the authorised systems objectives. When teachers work with children as co-researchers through the study of people's lives in particular places and times, the community and its complex histories become a rich resource for young people's literacy repertoires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everything (2008) is a looped 3 channel digital video (extracted from a 3D computer animation) that appropriates a range of media including photography, drawing, painting, and pre-shot video. The work departs from traditional time-based video which is generally based on a recording of an external event. Instead, “Everything” constructs an event and space more like a painting or drawing might. The works combines constructed events (including space, combinations of objects, and aesthetic relationship of forms) with pre-recorded video footage and pre-made paintings and drawings. The result is a montage of objects, images – both still and moving – and abstracted ‘painterly’ gestures. This technique creates a complex temporal displacement. 'Past' refers to pre-recorded media such as painting and photography, and 'future' refers to a possible virtual space not in the present, that these objects may occupy together. Through this simultaneity between the real and the virtual, the work comments on a disembodied sense of space and time, while also puncturing the virtual with a sense of materiality through the tactility of drawing and painting forms and processes. In so doing, te work challenges the perspectival Cartesian space synonymous with the virtual. In this work the disembodied wandering virtual eye is met with an uncanny combination of scenes, where scale and the relationships between objects are disrupted and changed. Everything is one of the first international examples of 3D animation technology being utilised in contemporary art. The work won the inaugural $75,000 Premier of Queensland National New Media Art Award and was subsequently acquired by the Queensland Art Gallery. The work has been exhibited and reviewed nationally and internationally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relics is a single-channel video derived from a 3D computer animation that combines a range of media including photography, drawing, painting, and pre-shot video. It is constructed around a series of pictorial stills which become interlinked by the more traditionally filmic processes of panning, zooming and crane shots. In keeping with these ideas, the work revolves around a series of static architectural forms within the strangely menacing enclosure of a geodesic dome. These clinical aspects of the work are complemented by a series of elements that evoke fluidity : fireworks, mirrored biomorphic forms and oscillating projections. The visual dimension of the work is complemented by a soundtrack of rainforest bird calls. Through its ambiguous combination of recorded and virtual imagery, Relics explores the indeterminate boundaries between real and virtual space. On the one hand, it represents actual events and spaces drawn from the artist studio and image archive; on the other it represents the highly idealised spaces of drawing and 3D animation. In this work the disembodied wandering virtual eye is met with an uncanny combination of scenes, where scale and the relationships between objects are disrupted and changed. Through this simultaneity between the real and the virtual, the work conveys a disembodied sense of space and time that carries a powerful sense of affect. Relics was among the first international examples of 3D animation technology in contemporary art. It was originally exhibited in the artist’s solo show, ‘Places That Don’t Exist’ (2007, George Petelin Gallery, Gold Coast) and went on to be included in the group shows ‘d/Art 07/Screen: The Post Cinema Experience’ (2007, Chauvel Cinema, Sydney) , ‘Experimenta Utopia Now: International Biennial of Media Art’ (2010, Arts Centre, Melbourne and national touring venues) and ‘Move on Asia’ (2009, Alternative space Loop, Seoul and Para-site Art Space, Hong Kong) and was broadcast on Souvenirs from Earth (Video Art Cable Channel, Germany and France). The work was analysed in catalogue texts for ‘Places That Don’t Exist’ (2007), ‘d/Art 07’ (2007) and ‘Experimenta Utopia Now’ (2010) and the’ Souvenirs from Earth’ website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.